DOI QR코드

DOI QR Code

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar (Departement of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Torkzadeh, Peyman (Departement of Civil Engineering, Shahid Bahonar University of Kerman) ;
  • Salajegheh, Eysa (Departement of Civil Engineering, Shahid Bahonar University of Kerman)
  • Received : 2022.01.17
  • Accepted : 2022.04.03
  • Published : 2022.03.25

Abstract

In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

Keywords

References

  1. Alkayem, N.F., Cao, M., Zhang, Y., Bayat, M. and Su, Z. (2018), "Structural damage detection using finite element model updating with evolutionary algorithm: a survey", Neural Comput. Appl., 30, 389-411. https://doi.org/10.1007/s00521-017-3284-1
  2. Altunisik, A.C., Sevim, B., Sunca, F. and Okur, F.Y. (2021), "Optimal sensor placements for system identification of concrete arch dams", Adv. Concrete Construct., Int. J., 11(5), 397-407. https://doi.org/10.12989/acc.2021.11.5.397
  3. Beygzadeh, S., Salajegheh, E., Torkzdeh, P., Salajegheh, J. and Naseralavi, S.S. (2014), "An improved genetic algorithm for optimal sensor placement in space structures damage detection", Int. J. Space Struct., 29(3), 121-136. https://doi.org/10.1260/0266-3511.29.3.121
  4. Castro-Triguero, R., Murugan, S., Gallego, R. and Friswell, M.I. (2013), "Robustness of optimal sensor placement under parametric uncertainty", Mech. Syst. Signal Proc., 41, 268-287. https://doi.org/10.1016/j.ymssp.2013.06.022
  5. Chisari, C., Macorini, L., Amadio, C. and Izzuddin, B.A. (2017), "Optimal sensor placement for structural parameter identification", Struct. Multidiscip. Optim., 55, 647-662. https://doi.org/10.1007/s00158-016-1531-1
  6. Das, S. and Dhang, N. (2022), "Damage identification of structures using incomplete mode shape and improved TLBO-PSO with self-controlled multi-stage strategy", Structures, 35, 1101-1124. https://doi.org/10.1016/j.istruc.2021.07.089
  7. Dinh-Cong, D., Vo-Duy, T., Ho-Huu, V., Dang-Trung, H. and Nguyen-Thoi, T. (2017), "An efficient multistage optimization approach for damage detection in plate structures", Adv. Eng. Soft., 112, 76-87. https://doi.org/10.1016/j.advengsoft.2017.06.015
  8. Dinh-Cong, D., Dang-Trung, H. and Nguyen-Thoi, T. (2018), "An efficient approach for optimal sensor placement and damage identification in laminated composite structures", Adv. Eng. Soft., 119, 48-59. https://doi.org/10.1016/j.advengsoft.2018.02.005
  9. Ghannadi, P., Kourehli, S.S., Noori, M. and Altabey, W.A. (2020), "Efficiency of grey wolf optimization algorithm for damage detection of skeletal structures via expanded mode shapes", Adv. Struct. Eng., 23(13), 2850-2865. https://doi.org/10.1177/1369433220921000
  10. Ghiasi, R., Torkzadeh, P. and Noori, M. (2016), "A machine-learning approach for structural damage detection using least square support vector machine based on a new combinational kernel function", Struct. Health Monitor., 15, 302-316. https://doi.org/10.1177/1475921716639387
  11. Ghiasi, R., Fathnejat, H. and Torkzadeh, P. (2019), "A three-stage damage detection method for large-scale space structures using forward substructuring approach and enhanced bat optimization algorithm", Eng. Comput., 35, 857-874. https://doi.org/10.1007/s00366-018-0636-0
  12. He, L., Lian, J., Ma, B. and Wang, H. (2014), "Optimal multiaxial sensor placement for modal identification of large structures", Struct. Control Health Monitor., 21(1), 61-79. https://doi.org/10.1002/stc.1550
  13. Hosseini-Toudeshky, H. and Amjad, F.A. (2021), "Sensor placement optimization for guided wave-based structural health monitoring", Struct. Monitor. Maint., Int. J., 8(2), 125-150. https://doi.org/10.12989/smm.2021.8.2.125
  14. Hotelling, H. (1993), "Analysis of a complex of statistical variables into principal components", J. Edu. Psych., 24(6), 417-441. https://doi.org/10.1037/h0071325
  15. Kahya, V., Okur, F.Y., Karaca, S., Altunisik, A.C. and Aslan, M. (2021), "Multiple damage detection in laminated composite beams using automated model update", Structures, 34, 1665-1683. https://doi.org/10.1016/j.istruc.2021.08.117
  16. Kammer, D.C. (1991), "Sensor placement for on-orbit modal identification and correlation of large space structures", J. Guid. Control Dyn., 14(2), 251-259. https://doi.org/10.2514/3.20635
  17. Kammer, D.C. and Peck, J.A. (2008), "Mass-weighting methods for sensor placement using sensor set expansion techniques", Mech. Syst. Signal Process., 22(7), 1515-1525. https://doi.org/10.1016/j.ymssp.2008.01.002
  18. Kaveh, A. and Zolghadr, A. (2015), "An improved CSS for damage detection of truss structures using changes in natural frequencies and mode shapes", Adv. Eng. Soft., 80, 93-100. https://doi.org/10.1016/j.advengsoft.2014.09.010
  19. Khatir, S., Wahab, M.A., Boutchicha, D. and Khatir, T. (2019), "Structural health monitoring using modal strain energy damage indicator coupled with teaching-learning-based optimization algorithm and isogoemetric analysis", J. Sound Vib., 448, 230-246. https://doi.org/10.1016/j.jsv.2019.02.017
  20. Kim, T., Youn, B.D. and Oh, H. (2018), "Development of a stochastic effective independence (SEFI) method for optimal sensor placement under uncertainty", Mech. Syst. Signal Proc., 111, 615-627. https://doi.org/10.1016/j.ymssp.2018.04.010
  21. Laory, I., Hadj Ali, N.B., Trinh, T.N. and Smith, I.F.C. (2012), "Measurement system configuration for damage identification of continuously monitored structures", J. Bridge Eng., 17(6), 857-866. https://doi/10.1061/(ASCE)BE.1943-5592.0000386
  22. Liu, K., Yan, R.J. and Soares, C.G. (2018), "Optimal sensor placement and assessment for modal identification", Ocean Eng., 165, 209-220. https://doi.org/10.1016/j.oceaneng.2018.07.034
  23. Liu, C., Teng, J. and Peng, Z. (2020), "Optimal sensor placement for bridge damage detection using deflection influence line", Smart Struct. Syst., Int. J., 25(21), 169-181. https://doi.org/10.12989/sss.2020.25.2.169
  24. Lofrano, E., Pingaro, M., Trovalusci, P. and Paolone, A. (2020), "Optimal sensor placement in dynamic damage detection of beam using a statistical approach", J. Optim. Theory Appl., 187, 758-775. https://doi.org/10.1007/s10957-020-01761-3
  25. Naseralavi, S.S., Salajegheh, J., Salajegheh, E. and Fadaei, M.J. (2010), "An improved genetic algorithm using sensitivity analysis and micro search for damage detection", Asian J. Civil Eng., 11(6), 717-740.
  26. Ostachowicz, W., Soman, R. and Malinowski, P. (2019), "Optimization of sensor placement for structural health monitoring: A review", Struct. Health Monitor., 18(3), 963-988. https://doi.org/10.1177/1475921719825601
  27. Pearson, K. (1901), "LIII. On lines and planes of closest fit to systems of points in space", The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 2(6), 559-572. https://doi.org/10.1080/14786440109462720
  28. Pourali, M. and Mosleh, A. (2013), "A bayesian approach to sensor placement optimization and system reliability monitoring", J. Risk Reliable., 227(3), 327-347. https://doi.org/10.1177/1748006X13485663
  29. Rao, A.R.M., Lakshmi, K. and Krishnakumar, S. (2014), "A generalized optimal sensor placement technique for structural health monitoring and system identification", Procedia Eng., 86, 529-538. https://doi.org/10.1016/j.proeng.2014.11.077
  30. Robert, C.P. and Casella, G. (2010), Monte Carlo Statistical Methods, (2td Edition), Springer, New York.
  31. Shi, Q., Wang, X., Chen, W. and Hu, K. (2020), "Optimal sensor placement method considering the importance of structural performance degradation for the allowable loadings for damage identification", Appl. Math. Model., 86, 384-403. https://doi.org/10.1016/j.apm.2020.05.021
  32. Shyamala, P., Mondal, S. and Chakraborty, S. (2018), "Numerical and experimental investigation for damage detection in FRP composite plates using support vector machine algorithm", Struct. Monitor. Maint., Int. J., 5(2), 243-260. https://doi.org/10.12989/smm.2018.5.2.243
  33. Sun, H. and Buyukozturk, O. (2015), "Optimal sensor placement in structural health monitoring using discrete optimization", Smart Mater. Struct., 24(12), 125034. https://doi.org/10.1088/0964-1726/24/12/125034
  34. Tan, Y. and Zhang, L. (2020), "Computational methodologies for optimal sensor placement in structural health monitoring: A review", Struct. Health Monitor., 19(4), 1287-1308. https://doi.org/10.1177/1475921719877579
  35. Vincenzi, L. and Simonini, L. (2017), "Influence of modal errors in optimal sensor placement", J. Sound Vib., 389, 119-133. https://doi.org/10.1016/j.jsv.2016.10.033
  36. Wang, J. and Yang, Q.S. (2017), "Sensor selection approach for damage identification based on response sensitivity", Struct. Monitor. Maint., Int. J., 4(1), 53-68. https://doi.org/10.12989/smm.2017.4.1.053
  37. Yang, Ch., Lu, Z. and Yang, Z. (2018), "Robust optimal sensor placement for uncertain structures with interval parameters", IEEE Sensors J., 18(5), 2031-2041. https://doi.org/10.1109/JSEN.2018.2789523
  38. Yi, T.H., Li, H.N., Song, G. and Zhang X.D. (2015), "Optimal sensor placement for health monitoring of high-rise structure using adaptive monkey algorithm", Struct. Cont. Health Monitor., 22(4), 667-681. https://doi.org/10.1002/stc.1708
  39. Yi, T.H., Zhou, G.D., Li, H.N. and Wang, C.W. (2017), "Optimal placement of triaxial sensor for modal identification using hierarchic wolf algorithm", Struct. Cont. Health Monitor., 24(8), e1958. https://doi.org/10.1002/stc.1958
  40. Zhang, J., Maes, K., De Roeck, G., Reynders, E., Papadimitriou, C. and Lombaert, G. (2017), "Optimal sensor placement for multi-setup modal analysis of structures", J. Sound Vib., 401, 214-232. https://doi.org/10.1016/j.jsv.2017.04.041
  41. Zhang, G., Tang, L., Zhou, L., Liu, Z., Liu, Y. and Jiang, Z. (2019), "Principal component analysis method with space and time windows for damage detection", Sensors, 19(11), 1-23. https://doi.org/10.3390/s19112521
  42. Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015a), "Energy-aware wireless sensor placement in structural health monitoring using hybrid discrete firefly algorithm", Struct. Health Monit., 22(4), 648-666. https://doi.org/10.1002/stc.1707
  43. Zhou, G.D., Yi, T.H., Zhang, H. and Li, H.N. (2015b), "Optimal sensor placement under uncertainties using a nondirective movement glowworm swarm optimization algorithm", Smart Struct. Syst., Int. J., 16(2), 243-262. https://doi.org/10.12989/sss.2015.16.2.243
  44. Zhou, G.D., Xie, M.X., Yi, T.H. and Li, H.N. (2019), "Optimal wireless sensor network configuration for structural monitoring using automatic-learning firefly algorithm", Adv. Struct. Eng., 22(4), 907-918. https://doi.org/10.1177/1369433218797074