DOI QR코드

DOI QR Code

Nonlinear numerical analysis and proposed equation for axial loading capacity of concrete filled steel tube column with initial imperfection

  • Ahmad, Haseeb (FAST-National University of Computer and Emerging Sciences) ;
  • Fahad, Muhammad (Department of Civil Engineering and Environmental Engineering, Saitama University) ;
  • Aslam, Muhammad (Department of Civil Engineering, School of Engineering & Technology, Institute of Southern Punjab)
  • Received : 2021.09.17
  • Accepted : 2022.04.06
  • Published : 2022.03.25

Abstract

The use of concrete filled steel tube (CFST) column is widely accepted due to its property of high axial load carrying capacity, more ductility and more resistant to earthquake specially using in bridges and high-rise buildings. The initial imperfection (δ) that produces during casting or fixing causes the reduction in load carrying capacity, this is the reason, experimental capacity is always less then theoretical one. In this research, the effect of δ on load carrying capacity and behavior of concrete filled steel tube (CFST) column have been investigated by numerically simulation of large number of models with different δ and other geometric parameters that include length (L), width (B), steel tube thickness (t), f'c and fy. Finite element analysis software ANSYS v18 is used to develop model of SCFST column to evaluate strength capacity, buckling and failure pattern of member which is applied during experimental study under cyclic axial loading. After validation of results, 42 models with different parameters are evaluated to develop empirical equation predicting axial load carrying capacity for different value of δ. Results indicate that empirical equation shows the 0 to 9% error for finite element analysis Forty-two models in comparison with ANSYS results, respectively. Empirical equation can be used for predicting the axial capacity of early estimating the axial capacity of SCFT column including 𝛿.

Keywords

Acknowledgement

The authors are grateful to staff of Structural Engineering Division of Civil Engineering Department at National University of Computer and Emerging Sciences, Lahore, Pakistan for providing us valuable guidance related FEA modelling.

References

  1. ANSYS User Manual Revision 18.0. (2018), ANSYS Inc., Canonburg, PA, USA.
  2. Ayough, P., Sulong, N.R. and Ibrahim, Z. (2020), "Analysis and review of concrete-filled double skin steel tubes under compression", Thin-Wall. Struct., 148, 106495. https://doi.org/10.1016/j.tws.2019.106495
  3. Ayough, P., Ibrahim, Z., Sulong, N.R. and Hsiao, P.-C. (2021), "The effects of cross-sectional shapes on the axial performance of concrete-filled steel tube columns", J. Constr. Steel Res., 176, 106424. https://doi.org/10.1016/j.jcsr.2020.106424
  4. Baetu, S. and Ciongradi, I.-P. (2011), "Nonlinear finite element analysis of reinforced concrete slit walls with ANSYS (I)", Buletinul Institutului Politehnic din lasi, Sectia Constructii, Arhitectura, 57(1), 31.
  5. Belal, M.F., Mohamed, H.M. and Morad, S.A. (2015), "Behavior of reinforced concrete columns strengthened by steel jacket", HBRC Journal, 11(2), 201-212. https://doi.org/10.1016/j.hbrcj.2014.05.002
  6. Cai, J., Pan, J., Lu, C. and Li, X. (2020), "Nonlinear analysis of circular concrete-filled steel tube columns under eccentric loading", Magaz. Concrete Res., 72(6), 292-303. https://doi.org/10.1680/jmacr.18.00204
  7. Chou, S., Chai, G. and Ling, L. (2000), "Finite element technique for design of stub columns", Thin-Wall. Struct., 37(2), 97-112. https://doi.org/10.1016/S0263-8231(00)00018-5
  8. Du, G., Babic, M., Wu, F., Zeng, X. and Bie, X.-M. (2019), "Experimental and numerical studies on concrete filled circular steel tubular (CFCST) members under impact loads", Int. J. Civil Eng., 17(8), 1211-1226. https://doi.org/10.1007/s40999-018-0379-8
  9. Effendi, M.K. (2020), "The effect of concrete-steel interface model on finite element analysis of concrete filled square steel tube beam", Civil Engineering Journal, 1(2), 135-146. https://doi.org/10.14311/CEJ.2020.02.0012
  10. Ellobody, E., Young, B. and Lam, D. (2006), "Behavior of normal and high strength concrete-filled compact steel tube circular stub columns", J. Constr. Steel Res., 62(7), 706-715. https://doi.org/10.1016/j.jcsr.2005.11.002
  11. Fang, H. and Visintin, P. (2022), "Structural performance of geopolymer-concrete-filled steel tube members subjected to compression and bending", J. Constr. Steel Res., 188, 107026. https://doi.org/10.1016/j.jcsr.2021.107026
  12. Gupta, P., Khaudhair, Z.A. and Ahuja, A. (2012), "A study on load carrying capacity and behavior of concrete filled steel tubular members subjected to axial compression", Proceedings of the 11th International Conference on Concrete Engineering and Technology, Putrajaya, Malaysia, June.
  13. He, L., Lin, S. and Jiang, H. (2019), "Confinement effect of concrete-filled steel tube columns with infill concrete of different strength grades", Frontiers Mater., 6, p. 71. https://doi.org/10.3389/fmats.2019.00071
  14. Hernandez-Figueirido, D., Romero, M., Bonet, J. and Montalva, J. (2012), "Ultimate capacity of rectangular concrete-filled steel tubular columns under unequal load eccentricities", J. Constr. Steel Res., 68(1), 107-117. https://doi.org/10.1016/j.jcsr.2011.07.014
  15. Hossain, K., Chu, K. and Anwar, M.S. (2021), "Axial load behavior of ultrahigh strength concrete-filled steel tube columns of various geometric and reinforcement configurations", Infrastructures, 6(5), p. 66. https://doi.org/10.3390/infrastructures6050066
  16. Hu, H.-T., Huang, C.-S., Wu, M.-H. and Wu, Y.-M. (2003), "Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect", J. Struct. Eng., 129(10), 1322-1329. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1322)
  17. Jin, L., Chen, H., Fan, L., Li, P. and Du, X. (2020), "Size Effect on Nominal Strength of Lightweight and Normal Concrete-Filled Steel Tube Columns under Axial Compression: Mesoscale Simulations", J. Struct. Eng., 146(12), 04020265. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002827
  18. Kachlakev, D., Miller, T., Yim, S., Chansawat, K. and Potisuk, T. (2001), "Finite element modeling of reinforced concrete structures strengthened with FRP laminates", Ph.D.; California Polytechnic State University, Oregon State University, Corvallis, OR, USA.
  19. Lakshmi, B. and Shanmugam, N. (2002), "Nonlinear analysis of in-filled steel-concrete composite columns", J. Struct. Eng., 128(7), 922-933. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:7(922)
  20. Li, P., Zhang, T. and Wang, C. (2018), "Behavior of concrete-filled steel tube columns subjected to axial compression", Adv. Mater. Sci. Eng., 2018. https://doi.org/10.1155/2018/4059675
  21. Liang, Q.Q., Uy, B. and Liew, J. (2007), "Strength of concrete-filled steel box columns with buckling effects", Austral. J. Struct. Eng., 7(2), 145-155. https://doi.org/10.1080/13287982.2007.11464972
  22. Liu, X., Liu, J., Yang, Y., Cheng, G. and Lanning, J. (2020), "Resistance of special-shaped concrete-filled steel tube columns under compression and bending", J. Constr. Steel Res., 169, 106038. https://doi.org/10.1016/j.jcsr.2020.106038
  23. Lu, F., Li, S. and Sun, G. (2007), "A study on the behavior of eccentrically compressed square concrete-filled steel tube columns", J. Constr. Steel Res., 63(7), 941-948. https://doi.org/10.1016/j.jcsr.2006.09.003
  24. Nguyen, D.H., Hong, W.-K., Ko, H.-J. and Kim, S.-K. (2019), "Finite element model for the interface between steel and concrete of CFST (concrete-filled steel tube)", Eng. Struct., 185, 141-158. https://doi.org/10.1016/j.engstruct.2019.01.068
  25. Nour, A.I. and Guneyisi, E.M. (2019), "Prediction model on compressive strength of recycled aggregate concrete filled steel tube columns", Compos. Part B: Eng., 173, 106938. https://doi.org/10.1016/j.compositesb.2019.106938
  26. Patel, V.I., Liang, Q.Q. and Hadi, M.N. (2017), "Nonlinear analysis of circular high strength concrete-filled stainless steel tubular slender beam-columns", Eng. Struct., 130, 1-13. https://doi.org/10.1016/j.engstruct.2016.10.004
  27. Perea, T., Leon, R.T., Hajjar, J.F. and Denavit, M.D. (2013), "Full-scale tests of slender concrete-filled tubes: axial behavior", J. Struct. Eng., 139(7), 1249-1262. https://doi.org/10.1061/(ASCE)ST.1943-541X.0000784
  28. Portoles, J., Romero, M.L., Bonet, J. and Filippou, F. (2011a), "Experimental study of high strength concrete-filled circular tubular columns under eccentric loading", J. Constr. Steel Res., 67(4), 623-633. https://doi.org/10.1016/j.jcsr.2010.11.017
  29. Portoles, J., Romero, M.L., Filippou, F.C. and Bonet, J. (2011b), "Simulation and design recommendations of eccentrically loaded slender concrete-filled tubular columns", Eng. Struct., 33(5), 1576-1593. https://doi.org/10.1016/j.engstruct.2011.01.028
  30. Sakino, K., Nakahara, H., Morino, S. and Nishiyama, I. (2004), "Behavior of centrally loaded concrete-filled steel-tube short columns", J. Struct. Eng., 130(2), 180-188. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:2(180)
  31. Schneider, S.P. (1998), "Axially loaded concrete-filled steel tubes", J. Struct. Eng., 124(10), 1125-1138. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:10(1125)
  32. Song, T.-Y. and Xiang, K. (2020), "Performance of axially-loaded concrete-filled steel tubular circular columns using ultra-high strength concrete", Structures, 24, 163-176. https://doi.org/10.1016/j.istruc.2019.12.019
  33. Varma, A.H., Ricles, J.M., Sause, R. and Lu, L.-W. (2002), "Experimental behavior of high strength square concrete-filled steel tube beam-columns", J. Struct. Eng., 128(3), 309-318. https://doi.org/10.1061/(ASCE)0733-9445(2002)128:3(309)
  34. Wang, Y.Z. and Li, B.S. (2013), "Finite element analysis for concrete filled double-skin steel tubular stub columns", Adv. Mater. Res., 690, 696-699. https://doi.org/10.4028/www.scientific.net/AMR.690-693.696
  35. Wei, J., Luo, X., Lai, Z. and Varma, A.H. (2020), "Experimental behavior and design of high-strength circular concrete-filled steel tube short columns", J. Struct. Eng., 146(1), 04019184. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002474
  36. Yu, M., Zha, X., Ye, J. and She, C. (2010), "A unified formulation for hollow and solid concrete-filled steel tube columns under axial compression", Eng. Struct., 32(4), 1046-1053. https://doi.org/10.1016/j.engstruct.2009.12.031
  37. Yu, M., Zha, X., Ye, J. and Li, Y. (2013), "A unified formulation for circle and polygon concrete-filled steel tube columns under axial compression", Eng. Struct., 49, 1-10. https://doi.org/10.1016/j.engstruct.2012.10.018