DOI QR코드

DOI QR Code

나노 입자의 플라즈모닉 현상 증폭을 위한 나노구조 표면과 제작방법에 관한 연구

A Study on the Surface and Manufacturing Method of Nanostructure for Amplification of Plasmonic Phenomena of Nanoparticles

  • 이재원 (부산대학교 인지메카트로닉스공학과) ;
  • 정명영 (부산대학교 광메카트로닉스공학과)
  • Yi, Jae Won (Department of Cogno mechatronics Engineering, Pusan National University) ;
  • Jeong, Myungyung (Department of Opto-Mechatronics Engineering, Pusan National University)
  • 투고 : 2022.03.14
  • 심사 : 2022.03.30
  • 발행 : 2022.03.30

초록

본 논문에서는 플라즈몬 공명 현상을 통하여 나노 입자 주변의 전기장을 증폭시키며, 흡광률을 높일 수 있는 구조를 시간영역 유한차분(FDTD)시뮬레이션을 이용하여 나노입자를 평면에 배열하였을 때와 비교하여 나노 구조에 배열하였을 때의 전기장과 흡광도를 비교하였다. 또한 나노구조의 폭을 240 nm ~ 300 nm로 조절하여 입자간의 간격이 좁을수록 광 흡수율이 높음을 보이고자 하였다. 또한 UV 임프린트를 통하여 나노 입자와 나노 구조를 표면에 함께 형성시키는 방법에 대한 연구를 진행하였다. 해당 구조에 입자를 형성하기 위하여 스프레이 코팅을 이용하여 나노 입자를 구조 제작에 사용되는 몰드에 먼저 배열한 후, UV 임프린팅을 통해 제작하였고 나노구조와 입자가 함께 형성됨을 Scanning Electron Microscopy 로 확인하였다.

In this paper, we compared the electric field and absorptance of nano particles in nanostructures by amplifying the electric field around the nanoparticles through plasmon resonance and comparing the structure that can increase the absorptance with the nanostructure by using the Finite Different Time Domain (FDTD) simulation. In addition, the width of the nanostructure was adjusted to 240 nm ~ 300 nm, and the light absorptance rate was higher as the gap between the particles was short. In addition, a study was conducted on the formation of nanoparticles and nanostructures on the surface through UV imprint. In order to form particles in the structure, the nano particles were first arranged in the mold used for the fabrication of the structure using spray coating, and then fabricated through UV imprinting. The nanostructure and particles were formed together by scanning electron microscopy.

키워드

과제정보

이 과제는 부산대학교 기본연구사업 (2년)에 의하여 연구되었음.

참고문헌

  1. B. H. Nam, H. Youn, J. Choi. "Durability Evaluation of Au Nanostructures for Flexible Devices using the Finite Element Method", J. of Korean Soc. Manuf. Technol. Eng., 30(1), 37-45 (2021).
  2. S. H. Chang, S. K. Gray, G. C. Schatz, "Surface plasmon generation and light transmission by isolated nanoholes and arrays of nanoholes in thin metal films", Optics Express, 13(8), 3150-3165 (2005). https://doi.org/10.1364/OPEX.13.003150
  3. A. Bozzola, M. Liscidini, L. C. Andreani, "Photonic Light-trapping Versus Lambertian Limits in Thin Film Silicon Solar Cells with 1D and 2D Periodic Patterns", Optics Express, 20(S2), A224-A244 (2012). https://doi.org/10.1364/OE.20.00A224
  4. J. H. Kim, & M. Y. Jeong, "A Study on Optical Characteristic of Plasmonic Nanostructure Depending on Height of Deposited Silver", J. Microelectron. Packag. Soc. 26(2), 55-58 (2019). https://doi.org/10.6117/KMEPS.2019.26.2.0055
  5. Z. Chang, Y. Lu, "Fabrication of superhydrophobic surfaces with Cassie-Baxter state", Journal of Dispersion Science and Technology, 1-13 (2020).
  6. P. Dimitrakellis, E. Gogolides, "Hydrophobic and superhydrophobic surfaces fabricated using atmospheric pressure cold plasma technology: A review. Advances in colloid and interface science", 254, 1-21 (2018). https://doi.org/10.1016/j.cis.2018.03.009
  7. H. Eltoum, Y. L. Yang, J. R. Hou, "The effect of nanoparticles on reservoir wettability alteration: a critical review. ", Petroleum Science, 18(1), 136-153 (2021). https://doi.org/10.1007/s12182-020-00496-0
  8. M. Andonegi, M. Pealba, K. D. la Caba, P. Guerrero, "ZnO nanoparticle-incorporated native collagen films with electro-conductive properties", Materials Science and Engineering: C, 108, 110394 (2020). https://doi.org/10.1016/j.msec.2019.110394
  9. M. Alavi, N. Karimi, T. Valadbeigi, "Antibacterial, antibiofilm, antiquorum sensing, antimotility, and antioxidant activities of green fabricated Ag, Cu, TiO2, ZnO, and Fe3O4 NPs via protoparmeliopsis muralis lichen aqueous extract against multi-drug-resistant bacteria", ACS Biomaterials Science & Engineering, 5(9), 4228-4243 (2019). https://doi.org/10.1021/acsbiomaterials.9b00274
  10. M. H. Jung, Y. J. Yun, M. J. Chu, M. G. Kang, "Fabrication of Ag Nanoparticles Embedded in TiO2 Nanotubes: Using Electrospun Nanofibers for Controlling Plasmonic Effects", Chemistry-A European Journal, 19(26), 8543-8549 (2013). https://doi.org/10.1002/chem.201300834
  11. I. Zada, W. Zhang, W. Zheng, Y. Zhu, Z. Zhang, J. Zhang, D. Zhang, "The highly efficient photocatalytic and light harvesting property of Ag-TiO 2 with negative nano-holes structure inspired from cicada wings", Scientific reports, 7(1), 1-9 (2017). https://doi.org/10.1038/s41598-016-0028-x
  12. T. Chung, S. Y. Lee, E. Y. Song, H. Chun, B. Lee, "Plasmonic nanostructures for nano-scale bio-sensing", Sensors, 11(11), 10907-10929 (2011). https://doi.org/10.3390/s111110907
  13. Z. Zuo, L. Sun, Y. Guo, L. Zhang, J. Li, K. Li, G. Cui, "Multiple plasmon couplings in 3D hybrid Au-nanoparticles-decorated Ag nanocone arrays boosting highly sensitive surface enhanced Raman scattering", Nano Research, 15(1), 317-325 (2022). https://doi.org/10.1007/s12274-021-3477-x
  14. D. Kim, D. I. Kim, M. Y. Jeong, "A Study of Mechanical Property Enhancement of Polymer Nanostructure using IPL Treatment", J. Microelectron. Packag. Soc, 27(4), 113-117 (2020). https://doi.org/10.6117/KMEPS.2020.27.4.113