DOI QR코드

DOI QR Code

메탄올 용매추출을 이용한 콜타르 흡수유 중의 인돌 결정화

Indole Crystallization in Coal Tar Absorption Oil using Methanol Solvent Extraction

  • 류희용 (서울과학기술대학교 화공생명공학과) ;
  • 이상헌 (서울과학기술대학교 화공생명공학과) ;
  • 신성순 (오메가에너지환경기술(주))
  • Ryu, Heeyong (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Lee, Sangheon (Department of Chemical and Biomolecular Engineering, Seoul National University of Science and Technology) ;
  • Shin, Sungsoon (Omega Energy Environmental Technology Co. Ltd.)
  • 투고 : 2022.02.03
  • 심사 : 2022.03.04
  • 발행 : 2022.04.10

초록

콜타르 흡수유에 함유되어 있는 성분 중 고부가가치의 인돌을 효율적으로 분리, 회수 하기 위하여 추출-증류-결정화의 과정을 거치는 방법으로 천연 인돌 확보 기술을 연구하였다. 본 연구에 사용된 콜타르 흡수유의 주요 성분은 1.2% 나프탈렌, 0.1% 퀴놀린, 0.4% 이소퀴놀린, 6.4% 인돌, 21.0% 1-메틸나프탈렌, 48.8% 2-메틸나프탈렌 그리고 11.7% 비페닐을 포함하고 있다. 인돌의 분리, 정제를 위해 먼저 메탄올을 용매로 사용하여 콜타르 흡수유 중 인돌 성분을 추출상으로 분리한 후, 증류법으로 메탄올을 회수하였다. 계속해서 메탄올이 제거된 추출용액에 노말헥산을 혼합한 후 결정화하여 순도 99.3%의 인돌을 회수하였다. 또한 본 연구 결과를 바탕으로 개략적인 콜타르 흡수유 중 인돌 회수의 공정을 제안하였다.

A method of efficiently purifying high value-added indole among components of coal tar absorption oil was studied using a step-by-step process of extraction-distillation-crystallization. The coal tar absorption oil used in this study contains 1.2% naphthalene, 0.1% quinoline, 0.4% isoquinoline, 6.4% indole, 21.0% 1-methylnaphthalene, 48.8% 2-methylnaphthalene, and 11.7% biphenyl as main components. For the separation and purification of indole, methanol was first used as a solvent to separate indole species in the coal tar absorption oil into an extract phase. And then methanol was recovered by distillation. Subsequently, an extraction solution where methanol was removed was mixed with normal hexane, and then crystallized to recover indole having a purity of 99.3%. Based on the experiments of this study, a purification process scheme for indole in coal tar absorption oil was proposed.

키워드

과제정보

본 연구는 한국산업기술진흥협회 산학연협력 클러스터 지원사업과제(KOITA-CLUSTER-2021-06)비 지원으로 수행되었으며, 이에 진심으로 깊은 감사를 드립니다.

참고문헌

  1. K. Takeda, K. Uemura, and T. Kobayashi, Hybrid molecular imprinted membranes having selectivity and separation behavior to targeted indole derivatives, Anal. Chim. Acta, 591, 40-48 (2007). https://doi.org/10.1016/j.aca.2007.02.017
  2. A. Nazir, K. Khan, A. Maan, R. Zia, L. Giorno, and K. Schroen, Membrane separation technology for the recovery of nutraceuticals from food industrial streams, Trends Food Sci. Technol., 86, 426-438 (2019). https://doi.org/10.1016/j.tifs.2019.02.049
  3. S. J. Kim, H. C. Kang, Y. S. Kim, and H. J. Jeong, Liquid membrane permeation of nitrogen heterocyclic compounds contained in model coal tar fraction, Bull. Korean Chem. Soc., 31, 1143-1148 (2010). https://doi.org/10.5012/bkcs.2010.31.5.1143
  4. Y. Kodera, K. Ukegawa, Y. Mito, M. Komoto, E. Ishikawa, and T. Nagayama, Solvent extraction of nitrogen compounds from coal liquids, Fuel, 70, 765-769 (1991). https://doi.org/10.1016/0016-2361(91)90076-M
  5. S. J. Kim and Y. J. Chun, Separation of nitrogen heterocyclic compounds from model coal tar fraction by solvent extraction, Sep. Sci. Technol., 40, 2095-2109 (2005). https://doi.org/10.1081/SS-200068488
  6. S. J. Kim, Y. J. Chun, and H. J. Jeong, Separation and recovery of indole from model coal tar fraction by batch cocurrent 5 stages equilibrium extraction, J. Korean Ind. Eng. Chem., 18, 168-172 (2007).
  7. S. J. Kim, Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction, Appl. Chem. Eng., 26, 234-238 (2015). https://doi.org/10.14478/ACE.2015.1003
  8. X. Zhang, J. Wang, J. Shen, Y. Wang, G. Liu, Y. Niu, and Q. Sheng, Highly efficient extraction of indole from model wash oil by using environmentally benign deep eutectic solvents, Sep. Purif. Technol., 285, 120381 (2022). https://doi.org/10.1016/j.seppur.2021.120381
  9. T. Jiao, C. Ren, S. Lin, L. Zhang, X. Xu, Y. Zhang, W. Zhang, and P. Liang, The extraction mechanism research for the separation of indole through the formation of deep eutectic solvents with quaternary ammonium salts, J. Mol. Liq., 347, 118325 (2022). https://doi.org/10.1016/j.molliq.2021.118325
  10. S. J. Kim, Comparison of Methanol with Formamide on Extraction of Nitrogen Heterocyclic Compounds Contained in Model Coal Tar Fraction, Appl. Chem. Eng., 26, 234-238(2015). https://doi.org/10.14478/ACE.2015.1003
  11. Y. Yamamoto, Y. Sato, T. Ebina, C, Yokoyama, S. Takahasi, Y. Mito, H. Tanabe, N. Nishiguchi and K. Nagaoka, Separation of high purity indole from coal tar by high pressure crystallization, Fuel, 70, 565-566 (1991). https://doi.org/10.1016/0016-2361(91)90039-D
  12. S. J. Kim, H. C. Kang, and H. J. Jeong, High-purity purification of indole contained in coal tar fraction -separation of close boiling mixtures of indole by solute crystallization-, Appl. Chem. Eng., 21, 238-241 (2010).
  13. Z. Ma, X. Wei, G. Liu, F. Liu, and Z. Zong, Value-added utilization of high-temperature coal tar: A review, Fuel, 292, 119954 (2021). https://doi.org/10.1016/j.fuel.2020.119954