Acknowledgement
This research was supported by Kyungpook National University Development Project Research Fund, 2019.
References
- J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray, Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods, Int. J. Cancer, 144, 1941-1953 (2019). https://doi.org/10.1002/ijc.31937
- D. Mathios, J. S. Johansen, S. Cristiano, J. E. Medina, J. Phallen, K. R. Larsen, D. C. Bruhm, N. Niknafs, L. Ferreira, V. Adleff, J. Y. Chiao, A. Leal, M. Noe, J. R. White, A. S. Arun, C. Hruban, A. V. Annapragada, S. O. Jensen, M. W. Orntoft, A. H. Madsen, B. Carvalho, M. de Wit, J. Carey, N. C. Dracopoli, T. Maddala, K. C. Fang, A. R. Hartman, P. M. Forde, V. Anagnostou, J. R. Brahmer, R. J. A. Fijneman, H. J. Nielsen, G. A. Meijer, C. L. Andersen, A. Mellemgaard, S. E. Bojesen, R. B. Scharpf, and V. E. Velculescu, Detection and characterization of lung cancer using cell-free DNA fragmentomes, Nat. Commun., 12, 5060 (2021). https://doi.org/10.1038/s41467-021-24994-w
- C. Rampinelli, D. Origgi, and M. Bellomi, Low-dose CT: technique, reading methods and image interpretation, Cancer Imaging, 12, 548-556 (2013). https://doi.org/10.1102/1470-7330.2012.0049
- P. Lee and H. G. Colt, Bronchoscopy in lung cancer: appraisal of current technology and for the future, J. Thorac. Oncol., 5, 1290-1300 (2010). https://doi.org/10.1097/jto.0b013e3181e41843
- J. K. Gohagan, P. M. Marcus, R. M. Fagerstrom, P. F. Pinsky, B. S. Kramer, P. C. Prorok, S. Ascher, W. Bailey, B. Brewer, T. Church, D. Engelhard, M. Ford, M. Fouad, M. Freedman, E. Gelmann, D. Gierada, W. Hocking, S. Inampudi, B. Irons, C. C. Johnson, A. Jones, G. Kucera, P. Kvale, K. Lappe, W. Manor, A. Moore, H. Nath, S. Neff, M. Oken, M. Plunkett, H. Price, D. Reding, T. Riley, M. Schwartz, D. Spizarny, R. Yoffie, and C. Zylak, Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer, Lung Cancer, 47, 9-15 (2005). https://doi.org/10.1016/j.lungcan.2004.06.007
- H. Mamdani, S. Ahmed, S. Armstrong, T. Mok, and S. I. Jalal, Blood-based tumor biomarkers in lung cancer for detection and treatment, Transl. Lung Cancer Res., 6, 648-660 (2017). https://doi.org/10.21037/tlcr.2017.09.03
- C. Min, H. Ha, and J. Jeon, Development of fluorescent small molecules for imaging of alzheimer's disease biomarkers, Appl. Chem. Eng., 32, 1-9 (2021). https://doi.org/10.14478/ACE.2020.1094
- A. Scott and R. Salgia, Biomarkers in lung cancer: from early detection to novel therapeutics and decision making, Biomark. Med., 2, 577-586 (2008). https://doi.org/10.2217/17520363.2.6.577
- S. H. Lee, E. Goh, and H. J. Lee, Research trend of biochip sensors for biomarkers specific to diagnostics of lung cancer diseases, Appl. Chem. Eng., 29, 645-651 (2018). https://doi.org/10.14478/ACE.2018.1110
- E. F. Patz, Jr., M. J. Campa, E. B. Gottlin, I. Kusmartseva, X. R. Guan, and J. E. Herndon II, Panel of serum biomarkers for the diagnosis of lung cancer, J. Clin. Oncol., 25, 5578-5583 (2007). https://doi.org/10.1200/JCO.2007.13.5392
- B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics, 8, 39 (2018). https://doi.org/10.3390/diagnostics8020039
- H. Tian, C. Yuan, Y. Liu, Z. Li, K. Xia, M. Li, F. Xie, Q. Chen, M. Chen, W. Fu, and Y. Zhang, A novel quantification platform for point-of-care testing of circulating MicroRNAs based on allosteric spherical nanoprobe, J. Nanobiotechnology, 18, 158 (2020). https://doi.org/10.1186/s12951-020-00717-z
- P. Zhou, F. Lu, J. Wang, K. Wang, B. Liu, N. Li, and B. Tang, A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva, Chem. Commun., 56, 8968-8971 (2020). https://doi.org/10.1039/d0cc03180a
- A. Fajri, E. Goh, S. H. Lee, and H. J. Lee, Analysis of human serum amyloid A-1 concentrations using a lateral flow immunoassay with CdSe/ZnS quantum dots, Appl. Chem. Eng., 30, 429-434 (2019). https://doi.org/10.14478/ACE.2019.1044
- V. Thiviyanathan and D. G. Gorenstein, Aptamers and the next generation of diagnostic reagents, Proteomics Clin. Appl., 6, 563-573 (2012). https://doi.org/10.1002/prca.201200042
- K. Urmann, J. Modrejewski, T. Scheper, and J. Walter, Aptamermodified nanomaterials: principles and applications, BioNanoMaterials, 18, 1-2 (2017).
- X. Chen, X. Miao, T. Ma, Y. Leng, L. Hao, H. Duan, J. Yuan, Y. Li, X. Huang, and Y. Xiong, Gold nanobeads with enhanced absorbance for improved sensitivity in competitive lateral flow immunoassays, Foods, 10, 1488 (2021). https://doi.org/10.3390/foods10071488
- S. Lee and H. J. Lee, Recent research trend in lateral flow immunoassay strip (LFIA) with colorimetric method for detection of cancer biomarkers, Appl. Chem. Eng., 31, 585-590 (2020). https://doi.org/10.14478/ACE.2020.1093
- D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018). https://doi.org/10.14478/ACE.2017.1109
- T. Mahmoudi, M. de la Guardia, and B. Baradaran, Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends, TrAC - Trends Anal. Chem., 125, 115842 (2020). https://doi.org/10.1016/j.trac.2020.115842
- M. Supianto, S. H. Lee, S. H. Jhung, H. B. Mohammad, H. M. Vu, M.-S. Kim, W.-Y. Song, T.-Y. Kim, and H. J. Lee, Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1, Microchim. Acta, 188, 386 (2021). https://doi.org/10.1007/s00604-021-05019-1
- S. J. Lee, B. S. Youn, J. W. Park, J. H. Niazi, Y. S. Kim, and M. B. Gu, ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes, Anal. Chem., 80, 2867-2873 (2008). https://doi.org/10.1021/ac800050a
- R. Torabi and H. Ghourchian, Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages, Sci. Rep., 10, 594 (2020). https://doi.org/10.1038/s41598-019-57396-6
- N. Zhang, Z. Chen, D. Liu, H. Jiang, Z.-K. Zhang, A. Lu, B.-T. Zhang, Y. Yu, and G. Zhang, Structural biology for the molecular insight between aptamers and target proteins, Int. J. Mol. Sci., 22, 4093 (2021). https://doi.org/10.3390/ijms22084093
- S. Mura, R. Ludmerczki, L. Stagi, S. Garroni, C. M. Carbonaro, P. C. Ricci, M. F. Casula, L. Malfatti, and P. Innocenzi, Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films, Sci. Rep., 10, 4770 (2020). https://doi.org/10.1038/s41598-020-61517-x
- A. M. Peterson, F. M. Jahnke, and J. M. Heemstra, Modulating the substrate selectivity of DNA aptamers using surfactants, Langmuir, 31, 11769-11773 (2015). https://doi.org/10.1021/acs.langmuir.5b02818
- S. Dalirirad and A. J. Steckl, Aptamer-based lateral flow assay for point of care cortisol detection in sweat, Sens. Actuators B: Chem., 283, 79-86 (2019). https://doi.org/10.1016/j.snb.2018.11.161
- Q. Yu, Q. Zhao, S. Wang, S. Zhao, S. Zhang, Y. Yin, and Y. Dong, Development of a lateral flow aptamer assay strip for facile identification of theranostic exosomes isolated from human lung carcinoma cells, Anal. Biochem., 594, 113591 (2020). https://doi.org/10.1016/j.ab.2020.113591
- T. Mahmood and P. C. Yang, Western blot: technique, theory, and trouble shooting, N. Am. J. Med. Sci., 4, 429-434 (2012). https://doi.org/10.4103/1947-2714.100998