DOI QR코드

DOI QR Code

Development of Lateral Flow Immunofluorescence Assay Applicable to Lung Cancer

폐암 진단에 적용 가능한 측면 유동 면역 형광 분석법 개발

  • Supianto, Mulya (Department of Chemistry, Kyungpook National University) ;
  • Lim, Jungmin (Department of Chemistry, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry, Kyungpook National University)
  • 뮬야수피안토 (경북대학교 자연과학대학 화학과) ;
  • 임정민 (경북대학교 자연과학대학 화학과) ;
  • 이혜진 (경북대학교 자연과학대학 화학과)
  • Received : 2022.02.18
  • Accepted : 2022.03.07
  • Published : 2022.04.10

Abstract

A lateral flow immunoassay (LFIA) method using carbon nanodot@silica as a signaling material was developed for analyzing the concentration of retinol-binding protein 4 (RBP4), one of the lung cancer biomarkers. Instead of antibodies mainly used as bioreceptors in nitrocellulose membranes in LFIA for protein detection, aptamers that are more economical, easy to store for a long time, and have strong affinities toward specific target proteins were used. A 5' terminal of biotin-modified aptamer specific to RBP4 was first reacted with neutravidin followed by spraying the mixture on the membrane in order to immobilize the aptamer in a porous membrane by the strong binding affinity between biotin and neutravidin. Carbon nanodot@silica nanoparticles with blue fluorescent signal covalently conjugated to the RBP4 antibody, and RBP4 were injected in a lateral flow manner on to the surface bound aptamer to form a sandwich complex. Surfactant concentrations, ionic strength, and additional blocking reagents were added to the running buffer solution to optimize the fluorescent signal off from the sandwich complex which was correlated to the concentration of RBP4. A 10 mM Tris (pH 7.4) running buffer containing 150 mM NaCl and 0.05% Tween-20 with 0.6 M ethanolamine as a blocking agent showed the optimum assay condition for carbon nanodot@silica-based LFIA. The results indicate that an aptamer, more economical and easier to store for a long time can be used as an alternative immobilizing probe for antibody in a LFIA device which can be used as a point-of-care diagnosis kit for lung cancer diseases.

탄소나노점@실리카를 신호 형질 소재로 이용한 측면 유동 면역 형광 분석법을 개발하여 폐암 바이오마커 중에 하나인 레티놀 결합 단백질 4의 농도를 분석하는 데 적용하고자 하였다. 측면 유동 면역 형광 분석법에서 항원 검출을 위해 바이오리셉터로 주로 사용하였던 항체 대신 좀 더 경제적이고, 장기간 보관성이 용이하며, 특정 표적 단백질에 대해 친화력이 강한 압타머를 니트로셀룰로오스 멤브레인에 사용하였다. 레티놀 결합 단백질 4에 특이적이며 5' 말단을 비오틴으로 변형한 압타머를 뉴트라비딘과 반응시켜 비오틴과 뉴트라비딘의 강한 결합력에 의해 압타머가 니트로 셀룰로오스 멤브레인에 고정되도록 하였다. 압타머가 고정된 스트립에 레티놀 결합 단백질 4 항체를 공유결합으로 고정한 탄소나노점@실리카 블루 형광 신호 형질 나노입자와 레티놀 결합 단백질 4 항원을 측면 유동 방식으로 흘려 주어 샌드위치 복합체를 형성하였다. 이렇게 형성된 샌드위치 복합체에서 탄소나노점@실리카 나노입자에 의한 형광 신호를 측정하여 항원 농도를 분석하기 위한 최적의 조건을 선정하기 위해 전개 완충용액에 첨가된 계면활성제의 농도, 이온 세기를 변화시키면서 블로킹 시약을 추가적으로 사용하였다. 그 결과 150 mM NaCl 및 0.05% Tween-20을 포함하는 10 mM Tris 완충용액(pH 7.4)에서 0.6 M 에탄올아민을 블로킹 시약으로 사용하였을 때 니트로셀룰로오스 멤브레인에 도포된 압타머와 레티놀 결합 단백질 4 항원 및 탄소나노점@실리카 나노입자로 레이블링한 항체가 결합하여 최적의 형광분석신호를 내는 것을 확인 가능하였다. 이러한 결과는 현장진단검사 키트로 현재 각광을 받고 있는 측면 유동 면역 형광 분석법에서 항체 대신 압타머를 니트로셀룰로오스 멤브레인에 고정함으로써 좀 더 경제적이며, 장기간 보관이 용이한 측면 유동 면역 형광 분석 칩을 제작하여 폐암 질환 진단용 바이오마커 검출이 가능함을 시사하였다.

Keywords

Acknowledgement

This research was supported by Kyungpook National University Development Project Research Fund, 2019.

References

  1. J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray, Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods, Int. J. Cancer, 144, 1941-1953 (2019). https://doi.org/10.1002/ijc.31937
  2. D. Mathios, J. S. Johansen, S. Cristiano, J. E. Medina, J. Phallen, K. R. Larsen, D. C. Bruhm, N. Niknafs, L. Ferreira, V. Adleff, J. Y. Chiao, A. Leal, M. Noe, J. R. White, A. S. Arun, C. Hruban, A. V. Annapragada, S. O. Jensen, M. W. Orntoft, A. H. Madsen, B. Carvalho, M. de Wit, J. Carey, N. C. Dracopoli, T. Maddala, K. C. Fang, A. R. Hartman, P. M. Forde, V. Anagnostou, J. R. Brahmer, R. J. A. Fijneman, H. J. Nielsen, G. A. Meijer, C. L. Andersen, A. Mellemgaard, S. E. Bojesen, R. B. Scharpf, and V. E. Velculescu, Detection and characterization of lung cancer using cell-free DNA fragmentomes, Nat. Commun., 12, 5060 (2021). https://doi.org/10.1038/s41467-021-24994-w
  3. C. Rampinelli, D. Origgi, and M. Bellomi, Low-dose CT: technique, reading methods and image interpretation, Cancer Imaging, 12, 548-556 (2013). https://doi.org/10.1102/1470-7330.2012.0049
  4. P. Lee and H. G. Colt, Bronchoscopy in lung cancer: appraisal of current technology and for the future, J. Thorac. Oncol., 5, 1290-1300 (2010). https://doi.org/10.1097/jto.0b013e3181e41843
  5. J. K. Gohagan, P. M. Marcus, R. M. Fagerstrom, P. F. Pinsky, B. S. Kramer, P. C. Prorok, S. Ascher, W. Bailey, B. Brewer, T. Church, D. Engelhard, M. Ford, M. Fouad, M. Freedman, E. Gelmann, D. Gierada, W. Hocking, S. Inampudi, B. Irons, C. C. Johnson, A. Jones, G. Kucera, P. Kvale, K. Lappe, W. Manor, A. Moore, H. Nath, S. Neff, M. Oken, M. Plunkett, H. Price, D. Reding, T. Riley, M. Schwartz, D. Spizarny, R. Yoffie, and C. Zylak, Final results of the Lung Screening Study, a randomized feasibility study of spiral CT versus chest X-ray screening for lung cancer, Lung Cancer, 47, 9-15 (2005). https://doi.org/10.1016/j.lungcan.2004.06.007
  6. H. Mamdani, S. Ahmed, S. Armstrong, T. Mok, and S. I. Jalal, Blood-based tumor biomarkers in lung cancer for detection and treatment, Transl. Lung Cancer Res., 6, 648-660 (2017). https://doi.org/10.21037/tlcr.2017.09.03
  7. C. Min, H. Ha, and J. Jeon, Development of fluorescent small molecules for imaging of alzheimer's disease biomarkers, Appl. Chem. Eng., 32, 1-9 (2021). https://doi.org/10.14478/ACE.2020.1094
  8. A. Scott and R. Salgia, Biomarkers in lung cancer: from early detection to novel therapeutics and decision making, Biomark. Med., 2, 577-586 (2008). https://doi.org/10.2217/17520363.2.6.577
  9. S. H. Lee, E. Goh, and H. J. Lee, Research trend of biochip sensors for biomarkers specific to diagnostics of lung cancer diseases, Appl. Chem. Eng., 29, 645-651 (2018). https://doi.org/10.14478/ACE.2018.1110
  10. E. F. Patz, Jr., M. J. Campa, E. B. Gottlin, I. Kusmartseva, X. R. Guan, and J. E. Herndon II, Panel of serum biomarkers for the diagnosis of lung cancer, J. Clin. Oncol., 25, 5578-5583 (2007). https://doi.org/10.1200/JCO.2007.13.5392
  11. B. Hayes, C. Murphy, A. Crawley, and R. O'Kennedy, Developments in point-of-care diagnostic technology for cancer detection, Diagnostics, 8, 39 (2018). https://doi.org/10.3390/diagnostics8020039
  12. H. Tian, C. Yuan, Y. Liu, Z. Li, K. Xia, M. Li, F. Xie, Q. Chen, M. Chen, W. Fu, and Y. Zhang, A novel quantification platform for point-of-care testing of circulating MicroRNAs based on allosteric spherical nanoprobe, J. Nanobiotechnology, 18, 158 (2020). https://doi.org/10.1186/s12951-020-00717-z
  13. P. Zhou, F. Lu, J. Wang, K. Wang, B. Liu, N. Li, and B. Tang, A portable point-of-care testing system to diagnose lung cancer through the detection of exosomal miRNA in urine and saliva, Chem. Commun., 56, 8968-8971 (2020). https://doi.org/10.1039/d0cc03180a
  14. A. Fajri, E. Goh, S. H. Lee, and H. J. Lee, Analysis of human serum amyloid A-1 concentrations using a lateral flow immunoassay with CdSe/ZnS quantum dots, Appl. Chem. Eng., 30, 429-434 (2019). https://doi.org/10.14478/ACE.2019.1044
  15. V. Thiviyanathan and D. G. Gorenstein, Aptamers and the next generation of diagnostic reagents, Proteomics Clin. Appl., 6, 563-573 (2012). https://doi.org/10.1002/prca.201200042
  16. K. Urmann, J. Modrejewski, T. Scheper, and J. Walter, Aptamermodified nanomaterials: principles and applications, BioNanoMaterials, 18, 1-2 (2017).
  17. X. Chen, X. Miao, T. Ma, Y. Leng, L. Hao, H. Duan, J. Yuan, Y. Li, X. Huang, and Y. Xiong, Gold nanobeads with enhanced absorbance for improved sensitivity in competitive lateral flow immunoassays, Foods, 10, 1488 (2021). https://doi.org/10.3390/foods10071488
  18. S. Lee and H. J. Lee, Recent research trend in lateral flow immunoassay strip (LFIA) with colorimetric method for detection of cancer biomarkers, Appl. Chem. Eng., 31, 585-590 (2020). https://doi.org/10.14478/ACE.2020.1093
  19. D. S. Kim and B. G. Choi, Preparation of surface functionalized gold nanoparticles and their lateral flow immunoassay applications, Appl. Chem. Eng., 29, 97-102 (2018). https://doi.org/10.14478/ACE.2017.1109
  20. T. Mahmoudi, M. de la Guardia, and B. Baradaran, Lateral flow assays towards point-of-care cancer detection: A review of current progress and future trends, TrAC - Trends Anal. Chem., 125, 115842 (2020). https://doi.org/10.1016/j.trac.2020.115842
  21. M. Supianto, S. H. Lee, S. H. Jhung, H. B. Mohammad, H. M. Vu, M.-S. Kim, W.-Y. Song, T.-Y. Kim, and H. J. Lee, Fluorescent paper strip immunoassay with carbon nanodots@silica for determination of human serum amyloid A1, Microchim. Acta, 188, 386 (2021). https://doi.org/10.1007/s00604-021-05019-1
  22. S. J. Lee, B. S. Youn, J. W. Park, J. H. Niazi, Y. S. Kim, and M. B. Gu, ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes, Anal. Chem., 80, 2867-2873 (2008). https://doi.org/10.1021/ac800050a
  23. R. Torabi and H. Ghourchian, Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages, Sci. Rep., 10, 594 (2020). https://doi.org/10.1038/s41598-019-57396-6
  24. N. Zhang, Z. Chen, D. Liu, H. Jiang, Z.-K. Zhang, A. Lu, B.-T. Zhang, Y. Yu, and G. Zhang, Structural biology for the molecular insight between aptamers and target proteins, Int. J. Mol. Sci., 22, 4093 (2021). https://doi.org/10.3390/ijms22084093
  25. S. Mura, R. Ludmerczki, L. Stagi, S. Garroni, C. M. Carbonaro, P. C. Ricci, M. F. Casula, L. Malfatti, and P. Innocenzi, Integrating sol-gel and carbon dots chemistry for the fabrication of fluorescent hybrid organic-inorganic films, Sci. Rep., 10, 4770 (2020). https://doi.org/10.1038/s41598-020-61517-x
  26. A. M. Peterson, F. M. Jahnke, and J. M. Heemstra, Modulating the substrate selectivity of DNA aptamers using surfactants, Langmuir, 31, 11769-11773 (2015). https://doi.org/10.1021/acs.langmuir.5b02818
  27. S. Dalirirad and A. J. Steckl, Aptamer-based lateral flow assay for point of care cortisol detection in sweat, Sens. Actuators B: Chem., 283, 79-86 (2019). https://doi.org/10.1016/j.snb.2018.11.161
  28. Q. Yu, Q. Zhao, S. Wang, S. Zhao, S. Zhang, Y. Yin, and Y. Dong, Development of a lateral flow aptamer assay strip for facile identification of theranostic exosomes isolated from human lung carcinoma cells, Anal. Biochem., 594, 113591 (2020). https://doi.org/10.1016/j.ab.2020.113591
  29. T. Mahmood and P. C. Yang, Western blot: technique, theory, and trouble shooting, N. Am. J. Med. Sci., 4, 429-434 (2012). https://doi.org/10.4103/1947-2714.100998