DOI QR코드

DOI QR Code

Application of cuttings to estimate the static characteristics of the dolomudstone rocks

  • Received : 2021.11.06
  • Accepted : 2022.01.27
  • Published : 2022.04.10

Abstract

Determination of strength properties of intact rock using artificial cores has been considered in recent years. In this study, some relationships for estimating the static properties of dolomudstone cores of the Asmari reservoir were presented using artificial cores prepared from cuttings of two wells, southwest of Iran. For this purpose, first natural cuttings (NC) and 33 cores including dolomite limestone (dolomudstone), anhydrite and anhydrite dolomite were prepared between depths of 1714 and 2208 meters. Petrographic, physical, mechanical and dynamic tests were performed on cores, NC and artificial cuttings (AC) which was prepared from the residuals of dolomudstone cores. For preparing the artificial cores, the average porosity of the dolomudstone cores was considered and determined using four methods. Artificial and natural cuttings were classified as dolomite limestone and dolomite limestone to calcareous dolomite, respectively. Using ordinary Portland cement (OPC), water, AC and NC artificial cores were prepared. Results of evaluating the proposed relationships using statistical criteria showed that the static properties of the artificial cores can be used to predict the static properties of the dolomudstone cores.

Keywords

Acknowledgement

Funding and necessary information for providing this work has been supported by the National Iranian South Oil Company (NISOC) and Ferdowsi University of Mashhad under grant number 43102 (12/02/1396), for which the authors are grateful.

References

  1. Abd El-Aal, A.K., Salah, M.K. and Khalifa, M.A. (2020), "Acoustic and strength characterization of Upper Cretaceous dolostones from the Bahariya Oasis, Western Desert, Egypt: The impact of porosity and diagenesis", J. Petrol. Sci. Eng., 187, 106798. https://doi.org/10.1016/j.petrol.2019.106798.
  2. Abetu, A.G. and Kebede, A.B. (2021), "Crushed concrete as adsorptive material for removal of phosphate ions from aqueous solutions", WCM, 2(5), 40-46. https://doi:10.26480/wcm.02.2021.51.57.
  3. Amiri, M. And Momivand, H. (2018), "Making artificial sandstone with a wide range of porosity", J. p. G., 2(1), spring and summer of 2018 (in Persian)
  4. ASTM C131-06 (2006), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.
  5. ASTM D2938 (2002), Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens, ASTM International, Pennsylvania, U.S.A. https://doi.org/10.1520/D2938-95R02.
  6. Boggs, J.R. and Boggs, S. (2009), Petrology of Sedimentary Rocks, Cambridge University press, Cambridge.
  7. British Standard Institution, (1989), "Code of Practice for Determination of Aggregate", Impact Value, "B.S. 812"
  8. Cheshomi, A. and Sheshde, E.A. (2013), "Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test". J. Petrol. Sci. Eng., 111, 121-126. https://doi.org/10.1016/j.petrol.2013.10.015.
  9. Dunham, R. (1962), "Classification of Carbonate Rocks According to Depositional Textures", Tulsa, Okla., American Association of Petroleum Geologists.
  10. Embry, A.F. and Klovan, JE. (1971), "A late Devonian reef tract on northeastern Banks Island, NWT", Bull. Can. Petrol. Geol., 19(4), 730-781. https://doi.org/10.35767/gscpgbull.19.4.730.
  11. Etemadi, M., Pouraghajan, M. and Gharavi, H. (2020) "Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes"., J. Civil Eng. Mater. App., 4(4), 243-252. https://doi:10.22034/jcema.2020.119979.
  12. Fang, Q., Wang, G., Yu, F. and Du, J. (2021), "Analytical algorithm for longitudinal deformation profile of a deep tunnel", J. Rock Mech. Geotech. Eng., 13(4), 845-854. https://doi:10.1016/j.jrmge.2021.01.012.
  13. Fedrizzi, R.M., De Ceia, M.A.R., Missagia, R.M., Santos, V.H. and Neto, I.L. (2018), "Artificial carbonate rocks: synthesis and petrophysical characterization", J. Petrol. Sci. Eng., 163, 303-310. https://doi.org/10.1016/j.petrol.2017.12.089.
  14. Gholami, S., Vafakhah, M., Ghaderi, K. and Javadi, M.R. (2020) "Simulation of rainfall-runoff process using geomorphology-based adaptive neuro-fuzzy inference system (ANFIS)". Casp. J. Environ. Sci., 18(2), 109-122. https://doi:10.22124/cjes.2020.4067.
  15. Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, p.113479. https://doi.org/10.1016/j.engstruct.2021.113479.
  16. Ivan'kova, Y.V. and Bogoslovskii, V.A. (2008), "Utilization of drill cuttings for interpretation of logging data in carbonate-rock oil and gas fields", Moscow Univ. Geol. Bull., 63(2), 128-130. https://doi: 10.3103/S0145875208020099.
  17. Johansson, E., Miskovsky, K. and Loorents, K.J. (2009), "Estimation of rock aggregates quality using analyses of drill cuttings", J. Mater. Eng. Perform., 18(3), 299-304. https://doi.org/10.1007/s11665-008-9284-7.
  18. Karaman, K. and Bakhytzhan, A. (2020), "Prediction of concrete strength from rock properties at the preliminary design stage", Geomech. Eng., 23(2), 115-125. https://doi.org/10.12989/gae.2020.23.2.115.
  19. Klein, C. and Hurlbut, C.S. (1985), "Manual of Mineralogy", 20" ED.
  20. Lee, M.Y., Ko, C.H., Chang, F.C., Lo, S.L., Lin, J.D., Shan, M.Y. and Lee, J.C. (2008), "Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction", Cement Concrete Compos., 30(7), 583-587. https://doi.org/10.1016/j.cemconcomp.2008.03.004.
  21. Lerman, N., Aronofsky, L. and Aghili, B. (2021), "Investigating the microstructure and mechanical properties of metakaolin-based polypropylene fiber-reinforced geopolymer concrete using different monomer ratios", J. Civ. Eng. Mater. Appl., 5(3), 115-123. https://doi:10.22034/jcema.2021.302140.1062.
  22. Li, D., Liu, X. and Liu, X. (2015), "Experimental study on artificial cemented sand prepared with ordinary portland cement with different contents", Mat., 8, 3960-3974. https://doi.org/10.3390/ma8073960.
  23. Mateus, J., Saavedra, N.F. Calderon, Z.H. and Mateus, D. (2007), "Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones", CT&F-Ciencia Tecnologia y Futuro, 3(3), 125-135. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100008. https://doi.org/10.29047/01225383.481
  24. Mehrabi Mazidi, S., Haftani, M., Bohloli, B. and Cheshomi, A. (2012), "Measurement of uniaxial compressive strength of rocks using reconstructed cores from rock cuttings", J. Petrol. Sci. Eng., 86, 39-43. https://doi.org/10.1016/j.petrol.2012.03.015.
  25. Moradi, S.S.T., Nikolaev, N.I., Chudinova, I.V. and Martel, A.S. (2018), "Geomechanical study of well stability in high-pressure, high-temperature conditions", Geomech. Eng., 16(3), 331-339. https://doi.org/10.12989/gae.2018.16.3.331.
  26. Nes, O.M., Sonstebo, E.F. and Holt, R.M. (2001), Rock Physics from Small Samples-Sometimes your only solution. Extended abstract, SCA.
  27. Singha, D. and Chatterjee, R. (2017), "Rock physics modeling in sand reservoir through well log analysis", Krishna-Godavari basin, India", Geomech. Eng., 13(1), 99-117. https://doi.org/10.12989/gae.2017.13.1.099.
  28. Tilaki, G.A.D., Jolandan, M.A. and Gholami, V. (2020), "Rangelands production modeling using an artificial neural network (ANN) and geographic information system (GIS) in Baladeh rangelands, North Iran", Casp. J. Environ. Sci., 18(3), 277-290. https://doi.org/10.22124/CJES.2020.4139.
  29. Wang, B., Liu, L., Wang, Y. and Li, L. (2020), "Stability evaluation of reinforced concrete structure of large coastal buildings", J. Coast. Res., 103(SI), 407-411. https://doi.org/10.2112/SI103-083.1.
  30. Wang, Z., Wang, R. and Schmitt, D.R. (2015), The Elastic Moduli of Velocities of Artificial Carbonate Rocks with Known Pore Structure at Different Saturation Conditions. CSPG GeoConvention, March.
  31. Xu, D., Liu, Q. and Qin, Y. (2021), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290, https://doi:10.1177/1475921720974290.
  32. Xu, J., Zhou, L., Li, Y. and Ding, J. (2022) "Experimental study on uniaxial compression behavior of fissured loess before and after vibration", Int. J. Geomech., 22(2), p.04021277. https://doi:10.1061/(ASCE)GM.1943-5622.0002259.
  33. Yan, C., Deng, J., Cheng, Y., Yan, X., Yuan, J. and Deng, F. (2017), "Rock mechanics and wellbore stability in Dongfang 1-1 gas field in South China Sea", Geomech. Eng., 12(3), 465-481. https://doi.org/10.12989/gae.2017.12.3.465.
  34. Zhang, S., Pak, R.Y. and Zhang, J. (2021), "Three-Dimensional Frequency-Domain Green's Functions of a Finite Fluid-Saturated Soil Layer Underlain by Rigid Bedrock to Interior Loadings", Int. J. Geomech., 22(1), p.04021267. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002235.
  35. Zhang, W. and Tang, Z. (2021), "Numerical modeling of response of CFRP-concrete interfaces subjected to fatigue loading", J. Compos. Constr., 25(5), p.04021043. https://doi:10.1061/(ASCE)CC.1943-5614.0001154.