Acknowledgement
Funding and necessary information for providing this work has been supported by the National Iranian South Oil Company (NISOC) and Ferdowsi University of Mashhad under grant number 43102 (12/02/1396), for which the authors are grateful.
References
- Abd El-Aal, A.K., Salah, M.K. and Khalifa, M.A. (2020), "Acoustic and strength characterization of Upper Cretaceous dolostones from the Bahariya Oasis, Western Desert, Egypt: The impact of porosity and diagenesis", J. Petrol. Sci. Eng., 187, 106798. https://doi.org/10.1016/j.petrol.2019.106798.
- Abetu, A.G. and Kebede, A.B. (2021), "Crushed concrete as adsorptive material for removal of phosphate ions from aqueous solutions", WCM, 2(5), 40-46. https://doi:10.26480/wcm.02.2021.51.57.
- Amiri, M. And Momivand, H. (2018), "Making artificial sandstone with a wide range of porosity", J. p. G., 2(1), spring and summer of 2018 (in Persian)
- ASTM C131-06 (2006), Standard Test Method for Resistance to Degradation of Small-Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine.
- ASTM D2938 (2002), Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens, ASTM International, Pennsylvania, U.S.A. https://doi.org/10.1520/D2938-95R02.
- Boggs, J.R. and Boggs, S. (2009), Petrology of Sedimentary Rocks, Cambridge University press, Cambridge.
- British Standard Institution, (1989), "Code of Practice for Determination of Aggregate", Impact Value, "B.S. 812"
- Cheshomi, A. and Sheshde, E.A. (2013), "Determination of uniaxial compressive strength of microcrystalline limestone using single particles load test". J. Petrol. Sci. Eng., 111, 121-126. https://doi.org/10.1016/j.petrol.2013.10.015.
- Dunham, R. (1962), "Classification of Carbonate Rocks According to Depositional Textures", Tulsa, Okla., American Association of Petroleum Geologists.
- Embry, A.F. and Klovan, JE. (1971), "A late Devonian reef tract on northeastern Banks Island, NWT", Bull. Can. Petrol. Geol., 19(4), 730-781. https://doi.org/10.35767/gscpgbull.19.4.730.
- Etemadi, M., Pouraghajan, M. and Gharavi, H. (2020) "Investigating the effect of rubber powder and nano silica on the durability and strength characteristics of geopolymeric concretes"., J. Civil Eng. Mater. App., 4(4), 243-252. https://doi:10.22034/jcema.2020.119979.
- Fang, Q., Wang, G., Yu, F. and Du, J. (2021), "Analytical algorithm for longitudinal deformation profile of a deep tunnel", J. Rock Mech. Geotech. Eng., 13(4), 845-854. https://doi:10.1016/j.jrmge.2021.01.012.
- Fedrizzi, R.M., De Ceia, M.A.R., Missagia, R.M., Santos, V.H. and Neto, I.L. (2018), "Artificial carbonate rocks: synthesis and petrophysical characterization", J. Petrol. Sci. Eng., 163, 303-310. https://doi.org/10.1016/j.petrol.2017.12.089.
- Gholami, S., Vafakhah, M., Ghaderi, K. and Javadi, M.R. (2020) "Simulation of rainfall-runoff process using geomorphology-based adaptive neuro-fuzzy inference system (ANFIS)". Casp. J. Environ. Sci., 18(2), 109-122. https://doi:10.22124/cjes.2020.4067.
- Huang, H., Xue, C., Zhang, W. and Guo, M. (2022), "Torsion design of CFRP-CFST columns using a data-driven optimization approach", Eng. Struct., 251, p.113479. https://doi.org/10.1016/j.engstruct.2021.113479.
- Ivan'kova, Y.V. and Bogoslovskii, V.A. (2008), "Utilization of drill cuttings for interpretation of logging data in carbonate-rock oil and gas fields", Moscow Univ. Geol. Bull., 63(2), 128-130. https://doi: 10.3103/S0145875208020099.
- Johansson, E., Miskovsky, K. and Loorents, K.J. (2009), "Estimation of rock aggregates quality using analyses of drill cuttings", J. Mater. Eng. Perform., 18(3), 299-304. https://doi.org/10.1007/s11665-008-9284-7.
- Karaman, K. and Bakhytzhan, A. (2020), "Prediction of concrete strength from rock properties at the preliminary design stage", Geomech. Eng., 23(2), 115-125. https://doi.org/10.12989/gae.2020.23.2.115.
- Klein, C. and Hurlbut, C.S. (1985), "Manual of Mineralogy", 20" ED.
- Lee, M.Y., Ko, C.H., Chang, F.C., Lo, S.L., Lin, J.D., Shan, M.Y. and Lee, J.C. (2008), "Artificial stone slab production using waste glass, stone fragments and vacuum vibratory compaction", Cement Concrete Compos., 30(7), 583-587. https://doi.org/10.1016/j.cemconcomp.2008.03.004.
- Lerman, N., Aronofsky, L. and Aghili, B. (2021), "Investigating the microstructure and mechanical properties of metakaolin-based polypropylene fiber-reinforced geopolymer concrete using different monomer ratios", J. Civ. Eng. Mater. Appl., 5(3), 115-123. https://doi:10.22034/jcema.2021.302140.1062.
- Li, D., Liu, X. and Liu, X. (2015), "Experimental study on artificial cemented sand prepared with ordinary portland cement with different contents", Mat., 8, 3960-3974. https://doi.org/10.3390/ma8073960.
- Mateus, J., Saavedra, N.F. Calderon, Z.H. and Mateus, D. (2007), "Correlation development between indentation parameters and uniaxial compressive strength for Colombian sandstones", CT&F-Ciencia Tecnologia y Futuro, 3(3), 125-135. http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0122-53832007000100008. https://doi.org/10.29047/01225383.481
- Mehrabi Mazidi, S., Haftani, M., Bohloli, B. and Cheshomi, A. (2012), "Measurement of uniaxial compressive strength of rocks using reconstructed cores from rock cuttings", J. Petrol. Sci. Eng., 86, 39-43. https://doi.org/10.1016/j.petrol.2012.03.015.
- Moradi, S.S.T., Nikolaev, N.I., Chudinova, I.V. and Martel, A.S. (2018), "Geomechanical study of well stability in high-pressure, high-temperature conditions", Geomech. Eng., 16(3), 331-339. https://doi.org/10.12989/gae.2018.16.3.331.
- Nes, O.M., Sonstebo, E.F. and Holt, R.M. (2001), Rock Physics from Small Samples-Sometimes your only solution. Extended abstract, SCA.
- Singha, D. and Chatterjee, R. (2017), "Rock physics modeling in sand reservoir through well log analysis", Krishna-Godavari basin, India", Geomech. Eng., 13(1), 99-117. https://doi.org/10.12989/gae.2017.13.1.099.
- Tilaki, G.A.D., Jolandan, M.A. and Gholami, V. (2020), "Rangelands production modeling using an artificial neural network (ANN) and geographic information system (GIS) in Baladeh rangelands, North Iran", Casp. J. Environ. Sci., 18(3), 277-290. https://doi.org/10.22124/CJES.2020.4139.
- Wang, B., Liu, L., Wang, Y. and Li, L. (2020), "Stability evaluation of reinforced concrete structure of large coastal buildings", J. Coast. Res., 103(SI), 407-411. https://doi.org/10.2112/SI103-083.1.
- Wang, Z., Wang, R. and Schmitt, D.R. (2015), The Elastic Moduli of Velocities of Artificial Carbonate Rocks with Known Pore Structure at Different Saturation Conditions. CSPG GeoConvention, March.
- Xu, D., Liu, Q. and Qin, Y. (2021), "Analytical approach for crack identification of glass fiber reinforced polymer-sea sand concrete composite structures based on strain dissipations", Struct. Health Monit., 1475921720974290, https://doi:10.1177/1475921720974290.
- Xu, J., Zhou, L., Li, Y. and Ding, J. (2022) "Experimental study on uniaxial compression behavior of fissured loess before and after vibration", Int. J. Geomech., 22(2), p.04021277. https://doi:10.1061/(ASCE)GM.1943-5622.0002259.
- Yan, C., Deng, J., Cheng, Y., Yan, X., Yuan, J. and Deng, F. (2017), "Rock mechanics and wellbore stability in Dongfang 1-1 gas field in South China Sea", Geomech. Eng., 12(3), 465-481. https://doi.org/10.12989/gae.2017.12.3.465.
- Zhang, S., Pak, R.Y. and Zhang, J. (2021), "Three-Dimensional Frequency-Domain Green's Functions of a Finite Fluid-Saturated Soil Layer Underlain by Rigid Bedrock to Interior Loadings", Int. J. Geomech., 22(1), p.04021267. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002235.
- Zhang, W. and Tang, Z. (2021), "Numerical modeling of response of CFRP-concrete interfaces subjected to fatigue loading", J. Compos. Constr., 25(5), p.04021043. https://doi:10.1061/(ASCE)CC.1943-5614.0001154.