DOI QR코드

DOI QR Code

ITO Nanoparticle Film을 이용한 센서의 전극 구조가 동작 성능에 미치는 영향에 대한 연구

Study on the Effect of the Electrode Structure of an ITO Nanoparticle Film Sensor On Operating Performance

  • 안상수 (한국해양대학교 전자소재공학과) ;
  • 노재하 (한국해양대학교 전자소재공학과) ;
  • 이창한 (한국해양대학교 전자소재공학과) ;
  • 이상태 (한국해양대학교 해양플랜트운영학과) ;
  • 서동민 (선박해양플랜트연구소 해양안전환경연구본부) ;
  • 이문진 (선박해양플랜트연구소 해양안전환경연구본부) ;
  • 장지호 (한국해양대학교 전자소재공학과)
  • An, Sangsu (Major of Electronic Materials Engineering, Korea Maritime and Oceean University) ;
  • Noh, Jaeha (Major of Electronic Materials Engineering, Korea Maritime and Oceean University) ;
  • Lee, Changhan (Major of Electronic Materials Engineering, Korea Maritime and Oceean University) ;
  • Lee, Sangtae (Department of offshore plant management, Korea Maritime and Oceean University) ;
  • Seo, Dongmin (Maritime safey and Environmental Research Division, KRISO) ;
  • Lee, Moonjin (Maritime safey and Environmental Research Division, KRISO) ;
  • Chang, Jiho (Major of Electronic Materials Engineering, Korea Maritime and Oceean University)
  • 투고 : 2022.02.04
  • 심사 : 2022.03.07
  • 발행 : 2022.03.31

초록

The effect of the structure of an ITO nanoparticle film sensor on its performance was studied. A printed ITO film (P-ITO film) was fabricated on a flexible polyethylene terephthalate (PET) substrate, and the contact resistance of the electrode and sensor response change were clarified according to the detection position. The contact resistance between Ag and P-ITO was observed to be -204.4 Ω using the transmission line method (TLM), confirming that a very good ohmic contact is possible. In addition, we confirmed that the contact position of the analyte had a significant influence on the response of the sensor. Based on these results, the performance of the four types of sensors was compared. Consequently, we observed that 1) optimizing the resistance of the printed film, 2) optimizing the electrode structure and analyte input position, and 3) optimizing the electrode area are very important for fabricating a metal oxide nanoparticle (MONP) sensor with optimal performance.

키워드

과제정보

본 연구는 해양수산부 지원 'HNS 사고 관리 기술 개발' 과제의 일환으로 수행되었습니다

참고문헌

  1. W. Tsujita, A. Yoshino, H. Ishida, and T. Moriizumi, "Gas sensor network for air-pollution monitoring", Sens. Actuators B: Chem, Vol. 110, No. 2, pp. 304-311, 2005. https://doi.org/10.1016/j.snb.2005.02.008
  2. N. Hanis, H. Hairom, C. F. Soon, R. M. S. R. Mohamed, M. Morsin, N. Zainal, N. Nayan, C. Z. Zulkifli, and N. H. Harun, "A review of nanotechnological applications to detect and control surface water pollution", Environ. Technol. Innov., Vol. 24, pp. 102032(1)-(25), 2021.
  3. Y. Jiang, L. L. Xiao, L. Zhao, and K.-Y. Wong, "Optical biosensor for the determination of BOD in seawater", Talanta, Vol. 70, No. 1, pp. 97-103, 2006. https://doi.org/10.1016/j.talanta.2005.11.046
  4. M. Z. Atashbar, D. Banerji, and S. Singamaneni, "Room temperature hydrogen sensor based on palladium nanowires", IEEE Sens. J. Vol. 5, No. 5, pp. 792-797, 2005. https://doi.org/10.1109/JSEN.2004.840837
  5. S. M. Dimov, N. I. Georgiev, A. M. Asiri, and V. B. Bojinov, "Synthesis and Sensor Activity of a PET-based 1, 8-naphthalimide Probe for Zn2+ and pH Determination" J. Fluoresc.. Vol 24, No. 6, pp. 1621-1628, 2014. https://doi.org/10.1007/s10895-014-1448-2
  6. A. Rios, M. Zougagh, and M. Avila, "Miniaturization through lab-on-a-chip: Utopia or reality for routine laboratories A review", Anal. Chim. Acta, Vol. 740, pp. 1-11, 2012. https://doi.org/10.1016/j.aca.2012.06.024
  7. E. Samiei, M. Tabrizian, and M. Hoorfar, "A review of digital microfluidics as portable platforms for lab-on a-chip applications", Lab Chip, Vol. 16, No. 13, pp. 2376-2396, 2016. https://doi.org/10.1039/C6LC00387G
  8. S. Kim, X. Y. Fu, X. Wang, and M. Ishii, "Development of the miniaturized four-sensor conductivity probe and the signal processing scheme", Int. J.Heat Mass Transfer, Vol. 43, No. 22, pp. 4101-4118, 2000. https://doi.org/10.1016/S0017-9310(00)00046-6
  9. D. Y. Sasaki, D. R. Shnek, and D. W. Pack, and F. H. Arnold, "Metal-Induced Dispersion of Lipid Aggregates: A Simple, Selective, and Sensitive Fluorescent Metal Ion Sensor", Angew. Chem.. Ed. Engl, Vol. 34, No. 8, pp. 905-907, 1995. https://doi.org/10.1002/anie.199509051
  10. C. Wu, J. Wu, J. Qi, L. Zhang, H. Huang, L. Lou, and Y. Chen, "Empirical estimation of total phosphorus concentration in the mainstream of the Qiantang River in China using Landsat TM data", Int. J. Remote Sens. Vol. 31, No. 9, pp. 2309-2324, 2010. https://doi.org/10.1080/01431160902973873
  11. J. Hur and J. Cho, "Prediction of BOD, COD, and Total Nitrogen Concentrations in a Typical Urban River Using a Fluorescence Excitation-Emission Matrix with PARAFAC and UV Absorption Indices", Sens., Vol. 12, No. 1, pp. 972-986, 2012. https://doi.org/10.3390/s120100972
  12. S. Lee, J. Y. Jung, M. Lee, and J. Chang, "An Aqueous Ammonia Sensor Based on Printed Indium Tin Oxide Layer", Sens.Mater., Vol. 29, No. 1, pp. 57-63, 2017.
  13. J. Koo, S. H. Lee, S. M. Cho, and J. Chang, "Effect of Additives on the Properties of Printed ITO Sensors", J. Korean Phys. Soc., Vol. 71, No. 6, pp. 335-339, 2017. https://doi.org/10.3938/jkps.71.335
  14. F. Shafizadeh and A. G. W. Bradbury, "Thermal degradation of cellulose in air and nitrogen at low temperatures", J. Appl. Polym. Sci., Vol. 23, No. 5, pp. 1431-1442, 1979. https://doi.org/10.1002/app.1979.070230513
  15. B. Demirel and H. Elcicek," Crystallization Behavior of PET Materials" BAu Fen Bil. Enst. Dergisi Cilt, Vol. 13, No. 1, pp. 26-35, 2011.
  16. D. Ko, H. Choi, J. Seo, J. Noh, S. Lee, J. Y. Jung, M. Lee, and J. Chang "Chemical sensing properties of indiumtinoxide (ITO) printed films fabricated onbiodegradable plastics", AIP Advances, Vol. 10, No. 4, pp. 045228(1)-045228(7), 2020. https://doi.org/10.1063/1.5141018
  17. K. Shin, M. Kim, S. Lee, J. Hwang, H. Kang, and K. Kang, "Reliability Evaluation of Silver Patterns Using Ink-jet Printing Technology", KIEE, Vol 39, No. 5, pp. 1450-1451, 2008.
  18. G. K. Reeves and H. B. Harrison, "Obtaining the specific contact resistance from transmission line model measurements", IEEE Electron. Device Letters, Vol. 3, No. 5, pp. 111-113, 1982. https://doi.org/10.1109/EDL.1982.25502
  19. S. S. Cohen, "Contact resistance and methods for its determination", Thin Solid Films, Vol. 104, pp. 361-379, 1983. https://doi.org/10.1016/0040-6090(83)90577-1
  20. M. X. Tan, P. E. Laibinis, S. T. Nguyen, J. M. Kesselman, C. E. Stanton, and N. S. Lewis, Principles and Applications of Semiconductor Photoelectrochemistry, John Wiley & Sons, New York, pp. 21-144, 1994.
  21. J. Vial, A. Jardy, "Experimental coparsion of the different approaches to estimate LOD and LOQ an HPLC Method", Anal. Chem. Vol. 71, No. 14, pp. 2672-2677, 1999. https://doi.org/10.1021/ac981179n
  22. G. Czanner, S. V. Sarma, D. Ba, U. T. Eden, W. Wu, E. Eskandar, H. H. Lim, S. Temereanca, W. A. Suzuki, and E. N. Brown, "Measuring the signal-to-noise ratio of a neuron", PNAS (Proc. Natl. Acad. Sci. USA), Vol. 112, No. 23, pp. 7141-7146, 2015. https://doi.org/10.1073/pnas.1505545112