Acknowledgement
This work was supported by the National Natural Science Foundation of China (U19A20109, 51708457), the Program of Introducing Talents of Discipline to Universities (111 Project) (grant number B16041).
References
- Andersson, A., O'Connor, A. and Karoumi, R. (2015), "Passive and adaptive damping systems for vibration mitigation and increased fatigue service life of a tied arch railway bridge", Comput.-Aid. Civil Infrastr. Eng., 30(9), 748-757. https://doi.org/10.1111/mice.12116.
- Bao, Y.L., Xiang, H., Li, Y. and Hou, G. (2021), "Dynamic effects of turbulent crosswinds on a suspended monorail vehicle-curved bridge coupled system", J. Vib. Control, 1077546320988197. https://doi.org/10.1177/1077546320988197.
- Cai, C.B., He, Q.L., Zhu, S.Y., Wang, M.Z. and Zhai, W.M. (2019), "Dynamic interaction of suspension-type monorail vehicle and bridge: numerical simulation and experiment", Mech. Syst. Signal Pr., 118, 388-407. https://doi.org/10.1016/j.ymssp.2018.08.062.
- Chan, T.H., Yu, L., Yung, T.H. and Chang, J.H. (2003), "A new bridge-vehicle system part I: Formulation and validation", Struct. Eng. Mech., 15(1), 1-19. https://doi.org/10.12989/sem.2003.15.1.001.
- Chen, Z.W., Han, Z.L., Fang, H. and Wei, K. (2018), "Seismic vibration control for bridges with high-piers in Sichuan-Tibet Railway", Struct. Eng. Mech., 66(6), 749-759. https://doi.org/10.12989/sem.2018.66.6.749.
- Choi, C.K., Song, M.K. and Yang, S.C. (1999), "Simplified 3-dimensional high-speed vehicle-bridge interaction analysis considering the eccentricity of vehicle axle loads", 1st International Conference on Advances in Structural Engineering and Mechanics, Seoul, South Korea, August.
- Elias, S. and Matsagar, V. (2017), "Effectiveness of tuned mass dampers in seismic response control of isolated bridges including soil-structure interaction", Lat. Am. J. Solid. Struct., 14(13), 2324-2341. http://doi.org/10.1590/1679-78253893.
- Erdogan, Y.S. and Catbas, N.F. (2020), "Seismic response of a highway bridge in case of vehicle-bridge dynamic interaction", Earthq. Struct., 18(1), 1-14. http://doi.org/10.12989/eas.2020.18.1.001.
- GB 5599 (2019). Specification for Dynamic Performance Assessment and Testing Verification of Rolling Stock, China Code Publishing House, Beijing, China.
- GB 7031 (2005), Mechanical Vibration-Road Surface Profiles-Reporting of Measured Data, China Code Publishing House, Beijing, China.
- Grava, S. (2003), Urban Transportation Systems, Choices for Communities, McGraw-Hill, New York, NY, USA.
- He, Q.L., Cai, C.B., Zhu, S.Y., Wang, K.Y. and Zhai, W.M. (2020d), "An improved dynamic model of suspended monorail train-bridge system considering a tyre model with patch contact", Mech. Syst. Signal Pr., 144, 106865. https://doi.org/10.1016/j.ymssp.2020.106865.
- He, Q.L., Cai, C.B., Zhu, S.Y., Wang, K.Y., Jiang, Y.Z. and Zhai, W.M. (2020c), "Improvement on curve negotiation performance of suspended monorail vehicle considering flexible guideway", Int. J. Struct. Stab. Dyn., 20(5), 2050057. https://doi.org/10.1142/S0219455420500571.
- He, Q.L., Cai, C.B., Zhu, S.Y., Zhang, J.W., Wang, K.Y. and Zhai, W.M. (2020a), "Field measurement of the dynamic responses of a suspended monorail train-bridge system", Proc. Inst. Mech. Eng., Part F: J. Rail Rapid Transit, 234(10), 1093-1108. https://doi.org/10.1177/0954409719880735.
- He, Q.L., Cai, C.B., Zhu, S.Y., Zhang, M.Z., Wang, K.Y. and Zhai, W.M. (2020b), "Key parameter selection of suspended monorail system based on vehicle-bridge dynamical interaction analysis", Vehicle Syst. Dyn., 58(3), 339-356. https://doi.org/10.1080/00423114.2019.1577470.
- Ji, Y.J. and Ren, L.H. (2018), "Anti-overturning capacity and critical roll angle of straddling monorail vehicle", Proc. Inst. Mech. Eng., Part C: J. Mech. Eng. Sci., 232(23), 4420-4429. https://doi.org/10.1177/0954406217753234.
- Jiang, L.Z., Feng, Y.L. and Zhou, W.B. (2019), "Vibration characteristic analysis of high-speed railway simply supported beam bridge-track structure system", Steel Compos. Struct., 31(6), 591-600. https://doi.org/10.12989/scs.2019.31.6.591.
- Jiang, Y., Wu, P.B., Zeng, J., Wu X.W., Zhang, Y.C., Yang, Z.H., Gao, R.J. and Dai, H.Y. (2020), "Researches on the resonance of a new type of suspended monorail vehicle-bridge coupling system based on modal analysis and rigid-flexible coupling dynamics", Vehicle Syst. Dyn., 59(1), 135-154. https://doi.org/10.1080/00423114.2019.1668029.
- Lee, C.H., Kawatani, M., Kim, C.W., Nishimura, N. and Kobayashi, Y. (2006), "Dynamic response of a monorail steel bridge under a moving train", J. Sound. Vib., 294, 562-579. https://doi.org/10.1016/j.jsv.2005.12.028.
- Li, Y., Xiao, R.C. and Sun, B. (2017), "Study on design parameters of leaning-type arch bridges", Struct. Eng. Mech., 64(2), 225-232. https://doi.org/10.12989/sem.2017.64.2.225.
- Linic, S., Ocokoljic, G., Ristic, S., Lucanin, V., Kozic, M., Rasuo, B. and Jegdic, B. (2018), "Boundary-layer transition detection by thermography and numerical method around bionic train model in wind tunnel test", Therm. Sci., 22(3), 1137-1148. https://doi.org/10.2298/TSCI170619302L.
- Liu, X., Han, Y., Cai, C.S., Levitan, M. and Nikitopoulos, D. (2016), "Wind tunnel tests for mean wind loads on road vehicles", J. Wind Eng. Ind Aerodyn., 150, 15-21. https://doi.org/10.1016/j.jweia.2015.12.004.
- Montenegro, P.A., Calcada, R., Carvalho, H., Bolkovoy, A. and Chebykin, I. (2020), "Stability of a train running over the Volga river high-speed railway bridge during crosswinds", Struct. Infrastr. Eng., 16(8), 1121-1137. https://doi.org/10.1080/15732479.2019.1684956.
- Naeimi, M., Tatari, M., Esmaeilzadeh, A. and Mehrali, M. (2015), "Dynamic interaction of the monorail-bridge system using a combined finite element multibody-based model", Proc. Inst. Mech. Eng., Part K: J. Multi-body Dyn., 229(2), 132-151. https://doi.org/10.1177/1464419314551189.
- Qu, S., Yang, J., Zhu, S., Zhai, W. and Kouroussis., G. (2021), "A hybrid methodology for predicting train-induced vibration on sensitive equipment in far-field buildings", Transp. Geotech., 31, 100682. https://doi.org/10.1016/j.trgeo.2021.100682.
- Shamsi, M. and Ghanbari, A. (2020) "Seismic retrofit of monorail bridges considering soil-pile-bridge-train interaction", J. Bridge Eng., 25(10), 04020075. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001613.
- Song, M. and Choi, C. (2002), "Analysis of high-speed vehicle-bridge interactions by a simplified 3-D model", Struct. Eng. Mech., 13(5), 505-532. https://doi.org/10.12989/sem.2002.13.5.505.
- Tanabe, M., Sogabe, M., Wakui, H., Matsumoto, N. and Tanabe, Y. (2016), "Exact time integration for dynamic interaction of high-speed train and railway structure including derailment during an earthquake", J. Comput. Nonlin. Dyn., 11(3), 031004. https://doi.org/10.1115/1.4030829.
- Xia, H., Guo, W.W., Zhang, N. and Sun, G.J. (2008), "Dynamic analysis of a train-bridge system under wind action". Comput. Struct., 86(19-20), 1845-1855. https://doi.org/10.1016/j.compstruc.2008.04.007.
- Xiang, H., Li, Y., Chen, S. and Li, C. (2017), "A wind tunnel test method on aerodynamic characteristics of moving vehicles under crosswinds", J. Wind Eng. Ind Aerodyn., 163, 15-23. https://doi.org/10.1016/j.jweia.2017.01.013.
- Yang, Y., He, Q., Cai, C., Zhu., S. and Zhai, W. (2021), "Coupled vibration analysis of suspended monorail train and curved bridge considering nonlinear wheel-track contact relation". Vehicle Syst. Dyn., 1-28. https://doi.org/10.1080/00423114.2021.1918727.
- Yang, Y.B., Yau, J.D. and Yao, Z. (2004), Vehicle-Bridge Interaction Dynamics: With Applications to High-Speed Railways, World Scientific, Singapore.
- Zhai, W.M. and Zhao, C.F. (2016), "Frontiers and challenges of sciences and technologies in modern railway engineering", J. Southwest Jiaotong Univ., 51(2), 209-226. (in Chinese) https://doi.org/10.3969/j.issn.0258-2724.2016.02.001.
- Zhai, W.M., Xia, H., Cai, C.B, Gao, M.M., Li, X.Z., Guo, X.R., Zhang, N. and Wang, K.Y. (2013), "High-speed vehicle-track-bridge dynamic interactions-Part I: Theoretical model and numerical simulation", Int. J. Rail Transp., 1(1-2), 3-24. https://doi.org/10.1080/23248378.2013.791498.
- Zhang, L. and Huang, J.Y. (2018), "Thermal effect on dynamic performance of high-speed maglev train/guideway system", Struct. Eng. Mech., 68(4), 459-473. https://doi.org/10.12989/sem.2018.68.4.459.
- Zhang, Y.F., Li, J., Chen, Z.W. and Xu, X.Y. (2019), "Dynamic analysis of metro vehicle traveling on a high-pier viaduct under crosswind in Chongqing", Wind. Struct., 29(5), 299-312. https://doi.org/10.12989/was.2019.29.5.299.
- Zhao, C. and Zhai, W. (2002), "Maglev vehicle/guideway vertical random response and ride quality", Vehicle Syst. Dyn., 38(3), 185-210. https://doi.org/10.1076/vesd.38.3.185.8289.
- Zheng, L., Chen, X.Y. and Li, X.W. (2017), "Optimization and application of multiple tuned mass dampers in the vibration control of pedestrian bridges", Struct. Eng. Mech., 62(1), 55-64. https://doi.org/10.12989/sem.2017.62.1.055.
- Zhou, J.C., Du, Z.X., Yang, Z. and Xu, Z.Z. (2020), "Dynamic parameters optimization of straddle-type monorail vehicles based multiobjective collaborative optimization algorithm", Vehicle Syst. Dyn., 58(3), 357-376. https://doi.org/10.1080/00423114.2019.1578384.