Acknowledgement
This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1F1A1062932).
References
- Alavizadeh SH, Soltani F, Ramezani M. Recent advances in immunoliposome-based cancer therapy. Current Pharmacology Reports. 2016. 2: 129-141. https://doi.org/10.1007/s40495-016-0056-z
- Audouy SA, de Leij LF, Hoekstra D, Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res. 2002. 19: 1599-1605. https://doi.org/10.1023/A:1020989709019
- Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. EpCAM-targeted liposomal si-RNA delivery for treatment of epithelial cancer. Drug Deliv. 2016. 23: 1101-1114. https://doi.org/10.3109/10717544.2014.973082
- Bolhassani A, Rafati S. Non-viral delivery systems in gene therapy and vaccine development. Non-viral gene delivery, InTech book. 2011. 27-50.
- Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018. 37: 107-124. https://doi.org/10.1007/s10555-017-9717-6
- Coombs MRP, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 2016. 380: 424-433. https://doi.org/10.1016/j.canlet.2016.06.023
- Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. The Lancet Oncology. 2019. 20: e175-e186. https://doi.org/10.1016/s1470-2045(19)30026-9
- Friedman CF, Postow MA. Emerging tissue and blood-based biomarkers that may predict response to immune checkpoint inhibition. Curr Oncol Rep. 2016. 18: 21.
- Haghiralsadat F, Amoabediny G, Naderinezhad S, Forouzanfar T, Helder MN, Zandieh-Doulabi B. Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology. 2018. 46(sup1): 684-692. https://doi.org/10.1080/21691401.2018.1434533
- Hopewell EL, Zhao W, Fulp WJ, et al. Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance. J Clin Invest. 2013. 123: 2509-2522. https://doi.org/10.1172/JCI67250
- Hrzenjak A, Moinfar F, Kremser M, et al. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Molecular Cancer. 2010. 9: 1-11. https://doi.org/10.1186/1476-4598-9-1
- Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences. 1996. 93: 14164-14169. https://doi.org/10.1073/pnas.93.24.14164
- Kim MW, Jeong HY, Kang SJ, et al. Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Scientific Reports. 2017. 7: 1-11. https://doi.org/10.1038/s41598-016-0028-x
- Lian S, Xie R, Ye Y, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 2019. 42: 281-295. https://doi.org/10.1016/j.ebiom.2019.03.018
- Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013. 5: 542-569. https://doi.org/10.3390/pharmaceutics5040542
- Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of formulation method, lipid composition, and PEGylation on vesicle lamellarity: A small-angle neutron scattering study. Langmuir. 2019. 35: 6064-6074. https://doi.org/10.1021/acs.langmuir.8b04256
- Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014. 32: 32-45. https://doi.org/10.1016/j.tibtech.2013.09.007
- Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 2018. 175: 313-326. https://doi.org/10.1016/j.cell.2018.09.035
- Song L, Fan Z, Jun N, et al. Tumor specific delivery and therapy mediate by integrin β6-target immunoliposomes for β6-siRNA in colon carcinoma. Oncotarget. 2016. 7: 85163.
- Wang X, Li J, Dong K, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cellular Signalling. 2015. 27: 443-452. https://doi.org/10.1016/j.cellsig.2014.12.003
- Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade Therapy Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery. 2018. 8: 1069-1086.
- Wirth T, Yla-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014. 2: 149-162. https://doi.org/10.3390/biomedicines2020149
- Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 Blockade HDAC inhibition upregulates PD-1 ligands in melanoma. Cancer Immunology Research. 2015. 3: 1375-1385. https://doi.org/10.1158/2326-6066.CIR-15-0077-T
- Xu L, Zhang Y, Tian K, et al. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. Journal of Experimental & Clinical Cancer Research. 2018. 37: 1-15. https://doi.org/10.1186/s13046-017-0664-4
- Youngren-Ortiz SR, Gandhi NS, Espana-Serrano L, Chougule MB. Aerosol delivery of siRNA to the lungs. part 2: Nanocarrier-based delivery systems. KONA Powder and Particle Journal. 2017: 2017005.
- Yu C, Liu X, Yang J, et al. Combination of immunotherapy with targeted therapy: Theory and practice in metastatic melanoma. Frontiers in Immunology. 2019. 10: 990.
- Zhao Y, Yu D, Wu H, et al. Anticancer activity of SAHA, a potent histone deacetylase inhibitor, in NCI-H460 human large-cell lung carcinoma cells in vitro and in vivo. Int J Oncol. 2014. 44: 451-458. https://doi.org/10.3892/ijo.2013.2193
- Zheng H, Zhao W, Yan C, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clinical Cancer Research. 2016. 22: 4119-4132. https://doi.org/10.1158/1078-0432.CCR-15-2584