DOI QR코드

DOI QR Code

PD-L1 Targeted Immunoliposomes with PD-L1 siRNA and HDAC Inhibitor for Anti-Lung Cancer Immunotherapy

  • Se-Yun, Hong (Department of Biomedical Laboratory Science, Konyang University) ;
  • Seong-Min, Lee (Department of Biomedical Laboratory Science, Konyang University) ;
  • Pyung-Hwan, Kim (Department of Biomedical Laboratory Science, Konyang University) ;
  • Keun-Sik, Kim (Department of Biomedical Laboratory Science, Konyang University)
  • Received : 2022.10.14
  • Accepted : 2022.11.28
  • Published : 2022.12.31

Abstract

Immunotherapy, which uses an immune mechanism in the body, has received considerable attention for cancer treatment. Suberoylanilide hydroxamic acid (SAHA), also known as a histone deacetylase inhibitor (HDACi), is used as a cancer treatment to induce active immunity by increasing the expression of T cell-induced chemokines. However, this SAHA treatment has the disadvantage of causing PD-L1 overexpression in tumor cells. In this study, we prevented PD-L1 overexpression by blocking the PD-1/PD-L1 pathway using PD-L1 siRNA. We designed two types of liposomes, the neutral lipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholin (POPC) for SAHA, and 1,2-dioleoyl-3-trimethylammoniumpropane (DOTAP) for siRNA. To effectively target PD-L1 in cancer cells, we conjugated PD-L1 antibody with liposomes containing SAHA or PD-L1 siRNA. These immunoliposomes were also evaluated for cytotoxicity, gene silencing, and T-cell-induced chemokine expression in human non-small cell lung cancer A549 cells. It was confirmed that the combination of the two immunoliposomes increased the cancer cell suppression efficacy through Jurkat T cell induction more than twice compared to SAHA alone treatment. In conclusion, this combination of immunoliposomes containing a drug and nucleic acid has promising therapeutic potential for non-small-cell lung carcinoma (NSCLC).

Keywords

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF-2021R1F1A1062932).

References

  1. Alavizadeh SH, Soltani F, Ramezani M. Recent advances in immunoliposome-based cancer therapy. Current Pharmacology Reports. 2016. 2: 129-141.  https://doi.org/10.1007/s40495-016-0056-z
  2. Audouy SA, de Leij LF, Hoekstra D, Molema G. In vivo characteristics of cationic liposomes as delivery vectors for gene therapy. Pharm Res. 2002. 19: 1599-1605.  https://doi.org/10.1023/A:1020989709019
  3. Bhavsar D, Subramanian K, Sethuraman S, Krishnan UM. EpCAM-targeted liposomal si-RNA delivery for treatment of epithelial cancer. Drug Deliv. 2016. 23: 1101-1114.  https://doi.org/10.3109/10717544.2014.973082
  4. Bolhassani A, Rafati S. Non-viral delivery systems in gene therapy and vaccine development. Non-viral gene delivery, InTech book. 2011. 27-50. 
  5. Chen X, Mangala LS, Rodriguez-Aguayo C, Kong X, Lopez-Berestein G, Sood AK. RNA interference-based therapy and its delivery systems. Cancer Metastasis Rev. 2018. 37: 107-124.  https://doi.org/10.1007/s10555-017-9717-6
  6. Coombs MRP, Harrison ME, Hoskin DW. Apigenin inhibits the inducible expression of programmed death ligand 1 by human and mouse mammary carcinoma cells. Cancer Lett. 2016. 380: 424-433.  https://doi.org/10.1016/j.canlet.2016.06.023
  7. Esteva FJ, Hubbard-Lucey VM, Tang J, Pusztai L. Immunotherapy and targeted therapy combinations in metastatic breast cancer. The Lancet Oncology. 2019. 20: e175-e186.  https://doi.org/10.1016/s1470-2045(19)30026-9
  8. Friedman CF, Postow MA. Emerging tissue and blood-based biomarkers that may predict response to immune checkpoint inhibition. Curr Oncol Rep. 2016. 18: 21. 
  9. Haghiralsadat F, Amoabediny G, Naderinezhad S, Forouzanfar T, Helder MN, Zandieh-Doulabi B. Preparation of PEGylated cationic nanoliposome-siRNA complexes for cancer therapy. Artificial Cells, Nanomedicine, and Biotechnology. 2018. 46(sup1): 684-692.  https://doi.org/10.1080/21691401.2018.1434533
  10. Hopewell EL, Zhao W, Fulp WJ, et al. Lung tumor NF-κB signaling promotes T cell-mediated immune surveillance. J Clin Invest. 2013. 123: 2509-2522.  https://doi.org/10.1172/JCI67250
  11. Hrzenjak A, Moinfar F, Kremser M, et al. Histone deacetylase inhibitor vorinostat suppresses the growth of uterine sarcomas in vitro and in vivo. Molecular Cancer. 2010. 9: 1-11.  https://doi.org/10.1186/1476-4598-9-1
  12. Huwyler J, Wu D, Pardridge WM. Brain drug delivery of small molecules using immunoliposomes. Proceedings of the National Academy of Sciences. 1996. 93: 14164-14169.  https://doi.org/10.1073/pnas.93.24.14164
  13. Kim MW, Jeong HY, Kang SJ, et al. Cancer-targeted nucleic acid delivery and quantum dot imaging using EGF receptor aptamer-conjugated lipid nanoparticles. Scientific Reports. 2017. 7: 1-11.  https://doi.org/10.1038/s41598-016-0028-x
  14. Lian S, Xie R, Ye Y, et al. Simultaneous blocking of CD47 and PD-L1 increases innate and adaptive cancer immune responses and cytokine release. EBioMedicine. 2019. 42: 281-295.  https://doi.org/10.1016/j.ebiom.2019.03.018
  15. Nag OK, Awasthi V. Surface engineering of liposomes for stealth behavior. Pharmaceutics. 2013. 5: 542-569.  https://doi.org/10.3390/pharmaceutics5040542
  16. Nele V, Holme MN, Kauscher U, Thomas MR, Doutch JJ, Stevens MM. Effect of formulation method, lipid composition, and PEGylation on vesicle lamellarity: A small-angle neutron scattering study. Langmuir. 2019. 35: 6064-6074.  https://doi.org/10.1021/acs.langmuir.8b04256
  17. Noble GT, Stefanick JF, Ashley JD, Kiziltepe T, Bilgicer B. Ligand-targeted liposome design: Challenges and fundamental considerations. Trends Biotechnol. 2014. 32: 32-45. https://doi.org/10.1016/j.tibtech.2013.09.007
  18. Sanmamed MF, Chen L. A paradigm shift in cancer immunotherapy: From enhancement to normalization. Cell. 2018. 175: 313-326.  https://doi.org/10.1016/j.cell.2018.09.035
  19. Song L, Fan Z, Jun N, et al. Tumor specific delivery and therapy mediate by integrin β6-target immunoliposomes for β6-siRNA in colon carcinoma. Oncotarget. 2016. 7: 85163. 
  20. Wang X, Li J, Dong K, et al. Tumor suppressor miR-34a targets PD-L1 and functions as a potential immunotherapeutic target in acute myeloid leukemia. Cellular Signalling. 2015. 27: 443-452.  https://doi.org/10.1016/j.cellsig.2014.12.003
  21. Wei SC, Duffy CR, Allison JP. Fundamental mechanisms of immune checkpoint blockade Therapy Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discovery. 2018. 8: 1069-1086. 
  22. Wirth T, Yla-Herttuala S. Gene therapy used in cancer treatment. Biomedicines. 2014. 2: 149-162.  https://doi.org/10.3390/biomedicines2020149
  23. Woods DM, Sodre AL, Villagra A, Sarnaik A, Sotomayor EM, Weber J. HDAC inhibition upregulates PD-1 ligands in melanoma and augments immunotherapy with PD-1 Blockade HDAC inhibition upregulates PD-1 ligands in melanoma. Cancer Immunology Research. 2015. 3: 1375-1385.  https://doi.org/10.1158/2326-6066.CIR-15-0077-T
  24. Xu L, Zhang Y, Tian K, et al. Apigenin suppresses PD-L1 expression in melanoma and host dendritic cells to elicit synergistic therapeutic effects. Journal of Experimental & Clinical Cancer Research. 2018. 37: 1-15.  https://doi.org/10.1186/s13046-017-0664-4
  25. Youngren-Ortiz SR, Gandhi NS, Espana-Serrano L, Chougule MB. Aerosol delivery of siRNA to the lungs. part 2: Nanocarrier-based delivery systems. KONA Powder and Particle Journal. 2017: 2017005. 
  26. Yu C, Liu X, Yang J, et al. Combination of immunotherapy with targeted therapy: Theory and practice in metastatic melanoma. Frontiers in Immunology. 2019. 10: 990. 
  27. Zhao Y, Yu D, Wu H, et al. Anticancer activity of SAHA, a potent histone deacetylase inhibitor, in NCI-H460 human large-cell lung carcinoma cells in vitro and in vivo. Int J Oncol. 2014. 44: 451-458.  https://doi.org/10.3892/ijo.2013.2193
  28. Zheng H, Zhao W, Yan C, et al. HDAC inhibitors enhance T-cell chemokine expression and augment response to PD-1 immunotherapy in lung adenocarcinoma. Clinical Cancer Research. 2016. 22: 4119-4132.  https://doi.org/10.1158/1078-0432.CCR-15-2584