DOI QR코드

DOI QR Code

헬스케어에서 인공지능을 활용한 라이프로그 분석과 미래

Lifelog Analysis and Future using Artificial Intelligence in Healthcare

  • 투고 : 2021.10.13
  • 심사 : 2022.03.08
  • 발행 : 2022.03.31

초록

라이프로그는 다양한 디지털 센서로부터 수집되는 개인의 디지털 기록으로, 활동량, 수면 정보, 체중 변화, 체질량, 근육량, 지방량 등이 포함된다. 최근, 웨어러블 디바이스가 보편화되면서 양질의 라이프로그 데이터가 많이 생산되고 있다. 라이프로그 데이터는 개인의 신체의 상태를 보여주는 데이터로, 개개인의 건강관리 뿐만 아니라, 질병의 원인 및 치료에도 활용될 수 있다. 그러나, 현재는, AI/ML 기반의 상관관계 분석 및 개인화를 반영하지 못하고 있다. 단순 기록이나 단편적인 통계치를 제시하는 수준에 그치고 있다. 이에 본 논문에서는, 라이프로그 데이터와 질병과의 연관성 및 AI/ML 기술의 라이프로그 데이터의 적용 사례를 살펴보고, 더 나아가, AI/ML을 활용한 라이프로그 데이터 분석 프로세스를 제안하고, 실제 갤럭시워치에서 수집된 데이터를 사용하여, 분석 프로세스를 실증한다. 더불어, 미래의 헬스케어 서비스인, 라이프로그 데이터와 식단, 건강정보, 질병정보와의 융복합 서비스 로드맵을 제안한다.

Lifelog is a digital record of an individual collected from various digital sensors, and includes activity amount, sleep information, weight change, body mass, muscle mass, fat mass, etc. Recently, as wearable devices have become common, a lot of high-quality lifelog data is being produced. Lifelog data shows the state of an individual's body, and can be used not only for individual health care, but also for causes and treatment of diseases. However, at present, AI/ML-based correlation analysis and personalization are not reflected. It is only at the level of presenting simple records or fragmentary statistics. Therefore, in this paper, the correlation/relationship between lifelog data and disease, and AI/ML technology inside lifelog data are examined, and furthermore, a lifelog data analysis process based on AI/ML is proposed. The analysis process is demonstrated with the data collected in the actual Galaxy Watch. Finally, we propose a future convergence service roadmap including lifelog data, diet, health information, and disease information.

키워드

과제정보

이 논문은 서울여자대학교 교내연구비의 지원을 받았음(2022-0107).

참고문헌

  1. Dodge, M. and Kitchin, R., "Outlines of a world coming into existence," Pervasive computing and the ethics of forgetting. Environment and Planning B: Planning and Design, Vol. 34, No. 3, pp.431-445, 2007. DOI:10.1068/b32041t
  2. Livingston et al., "Dementia prevention, intervention, and care.," Lancet, Vol. 16, No. 390 (10113), pp.2673-2734, 2017. DOI: 10.1016/S0140-6736(20)30367-6
  3. Schulam, P. and Saria, S. "Integrative Analysis using Coupled Latent Variable Models for Individualizing Prognoses," Journal of Machine Learning Research, Vol. 17, No. 232, pp. 1-35. url: http://jmlr.org/papers/v17/15- 436.html, 2016.
  4. Mammen, G. and Faulkner G., "Physical activity and the prevention of depression: a systematic review of prospective studies.," Am J Prev Med., Vol. 45, No. 5, pp. 649-657, 2013. DOI: 10.1016/j.amepre.2013.08.001
  5. Das, P. et al., "Rethinking our approach to physical activity," Lancet., Vol. 380, No. 9838, pp.189-190, 2012. DOI: 10.1016/S0140-6736(12)61024-1
  6. JoAnn, E. et al., "Walking Compared with Vigorous Exercise for the Prevention of Cardiovascular Events in Women," N Engl J Med, 347, pp.716-725, 2002. DOI: 10.1056/NEJMoa021067
  7. Christie, Y. et al., "Physical activity of moderate intensity and risk of type 2 diabetes, A systematic review.," Diabetes Care, Vol. 30, No. 3, pp. 744-752, 2007. DOI: 10.2337/dc06-1842
  8. Paddy, C. et al., "Benefits for Type 2 Diabetes of Interrupting Prolonged Sitting With Brief Bouts of Light Walking or Simple Resistance Activities," Diabetes Care, Vol. 39, No. 6, pp. 964-972, 2017.DOI: 10.2337/dc15-2336
  9. Christine, M et al., "State of the epidemiological evidence on physical activity and cancer prevention," European Journal of Cancer, Vol. 46, No. 14, pp. 2593-2604, 2010. DOI: 10.1016/j.ejca.2010.07.028
  10. Faith, S., Luyster et al., "Sleep: A Health Imperative," Sleep, Vol. 35, No. 6, pp. 727-734, 2012. DOI: 10.5665/sleep.1846
  11. Daniel, et al., "Shapley values for feature selection: The good, the bad, and the axioms," arXiv:2102. 10936, 2021. DOI: 10.48550/arXiv.2102.10936
  12. Cappuccio, F. P. et al., "Meta-analysis of short sleep duration and obesity in children and adults," Sleep, Vol. 31, pp. 619-626, 2008. DOI: 10.1093/sleep/31.5.619
  13. Marshall, N. S., Glozier, N., Grunstein, R. R., "Is sleep duration related to obesity. A critical review of the epidemiological evidence," Sleep Med Rev, Vol. 12, pp. 289-298, 2008. DOI: 10.1016/j.smrv.2008.03.001
  14. Patel, S. R. , et al., "Short sleep duration and weight gain: a systematic review," Obesity, Vol. 16, pp. 643-653, 2008. DOI: 10.1038/oby.2007.118
  15. Knutson, K. L., "Sleep duration and cardiometabolic risk: A review of the epidemiologic evidence," Best Pract Res Clin Endocrinol Metab, Vol. 24, pp.731-743, 2010. DOI: 10.1016/j.beem.2010.07.001
  16. Gottlieb, DJ, et al., "Association of sleep time with diabetes mellitus and impaired glucose tolerance," Arch Int Med, Vol. 165, pp. 863-867, 2005. DOI: 10.1001/archinte.165.8.863
  17. Kakizaki, M. et al., "Sleep duration and the risk of prostate cancer: the Ohsaki Cohort Study," Br J Cancer, Vol. 99, pp176-178, 2008. https://doi.org/10.1038/sj.bjc.6604425
  18. Thompson, C. L. et al., "Short duration of sleep increases risk of colorectal adenoma," Cancer, Vol. 117, pp. 841-847, 2010. DOI:10.1002/cncr.25507
  19. Wu, A. H. et al., "Sleep duration, melatonin and breast cancer among Chinese women in Singapore," Carcinogenesis, Vol. 29, 1244-1248, 2008. DOI: 10.1093/carcin/bgn100
  20. Verkasalo, P. K. et al., "Sleep duration and breast cancer: a prospective cohort study," Cancer Res, pp. 65-95, 2005. DOI: 10.1158/0008-5472.CAN-05-2138
  21. Kolstad, H. A., "Nightshift work and risk of breast cancer and other cancersa critical review of the epidemiologic evidence," Scand J Work Environ Health, Vol. 34, pp. 5-22, 2008. DOI: 10.5271/sjweh.1194
  22. Viswanathan, A. N. et al., "Night shift work and the risk of endometrial cancer," Cancer Res, Vol. 67, No. 21, pp. 10618-10622, 2007. DOI: 10.1158/0008-5472.CAN-07-2485.
  23. Hu, F. B., et al., Obesity Epidemiology, NY: Oxford University Press, New York, 2008.
  24. Maclure, K. M. et al., "Weight, diet, and the risk of symptomatic gallstones in middle-aged women," N Engl J Med., Vol. 321, No. 9, pp. 563-569, 1989. DOI: 10.1056/NEJM198908313210902
  25. Song, M. et al., "Adulthood weight change and risk of colorectal cancer in the Nurses'Health Study and Health Professionals Follow-up Study.," Cancer Prev Res (Phila), Vol. 8, No. 7, pp. 620-627, 2015.DOI: 10.1158/1940-6207.CAPR-15-0061
  26. Balbir, S. et al., "A Machine Learning Approach for Predicting Weight Gain Risks in Young Adults," IEEE International Conference on Dependable Systems, Services and Technologies (DESSERT), 2019. DOI: 10.1109/DESSERT.2019.8770016
  27. Kim, B. Y. and Shin, M. H., "Procedure for the Selection of Principal Components in Principal Components Regression," The Korean Statistical Society, Vol. 23, No. 5, pp. 967-975, 2010. https://doi.org/10.5351/KJAS.2010.23.5.967
  28. Thamrin, S. A., Arsyad, D., and Nasir, S., "Predicting Obesity in Adults Using Machine Learning Techniques: An Analysis of Indonesian Basic Health Research 2018," Frontiers in Nutrition, Vol. 8, No. 252, 2021.
  29. Delnevo, G., Mancini, G., Roccetti, M., Salomoni, P., Trombini, E., and Andrei, F., "The Prediction of Body Mass Index from Negative Affectivity through Machine Learning: A Confirmatory Study," Sensors, Vol. 21, No. 7, 2361, 2021. DOI:10.3390/s21072361
  30. V. Jindal. "Integrating Mobile and Cloud for PPG Signal Selection to Monitor Heart Rate during Intensive Physical Exercise," 2016 IEEE/ACM International Conference on Mobile Software Engineering and Systems (MOBILESoft), pp. 36-37, 2016. DOI: 10.1109/MobileSoft.2016.027.
  31. F. Attal et al. "Physical Human Activity Recognition Using Wearable Sensors," Sensors, Vol. 15, No. 12, pp.31314-31338, 2015. DOI:10.3390/s151229858
  32. K. Yu and Andrew Beam and I. Kohane. "Artificial intelligence in healthcare," Nature Biomedical Engineering, Vol.2, pp. 719-731, 2018. https://doi.org/10.1038/s41551-018-0305-z
  33. Ton Cellophane and Aeilko Zwinderman. Machine Learning in Medicine - A Complete Overview. Jan. 2015. isbn: 978-3-319-15194-6. DOI: 10.1007/978-3-319-15195-3.