Acknowledgement
This work was supported by the National Research Foundation (NRF) of Korea (2019R1A2C2006848) to J.S. and the National Research Foundation (NRF) of Korea (2020R1A6A3A13076568) to B.C.
References
- Arrese, E.L. and Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207-225. https://doi.org/10.1146/annurev-ento-112408-085356
- Banerjee, U., Girard, J.R., Goins, L.M., and Spratford, C.M. (2019). Drosophila as a genetic model for hematopoiesis. Genetics 211, 367-417. https://doi.org/10.1534/genetics.118.300223
- Baron, M.H., Isern, J., and Fraser, S.T. (2012). The embryonic origins of erythropoiesis in mammals. Blood 119, 4828-4837. https://doi.org/10.1182/blood-2012-01-153486
- Benmimoun, B., Polesello, C., Haenlin, M., and Waltzer, L. (2015). The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche. Proc. Natl. Acad. Sci. U. S. A. 112, 9052-9057. https://doi.org/10.1073/pnas.1423967112
- Benmimoun, B., Polesello, C., Waltzer, L., and Haenlin, M. (2012). Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717. https://doi.org/10.1242/dev.080259
- Blanco-Obregon, D., Katz, M.J., Durrieu, L., Gandara, L., and Wappner, P. (2020). Context-specific functions of Notch in Drosophila blood cell progenitors. Dev. Biol. 462, 101-115. https://doi.org/10.1016/j.ydbio.2020.03.018
- Boulan, L., Milan, M., and Leopold, P. (2015). The systemic control of growth. Cold Spring Harb. Perspect. Biol. 7, a019117. https://doi.org/10.1101/cshperspect.a019117
- Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
- Carton, Y., Poirie, M., and Nappi, A.J. (2008). Insect immune resistance to parasitoids. Insect Sci. 15, 67-87. https://doi.org/10.1111/j.1744-7917.2008.00188.x
- Chavakis, T., Mitroulis, I., and Hajishengallis, G. (2019). Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802-811. https://doi.org/10.1038/s41590-019-0402-5
- Cho, B., Spratford, C.M., Yoon, S., Cha, N., Banerjee, U., and Shim, J. (2018). Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nat. Commun. 9, 2679. https://doi.org/10.1038/s41467-018-04990-3
- Cho, B., Yoon, S.H., Lee, D., Koranteng, F., Tattikota, S.G., Cha, N., Shin, M., Do, H., Hu, Y., Oh, S.Y., et al. (2020). Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483. https://doi.org/10.1038/s41467-020-18135-y
- Crossley, A.C. (1972). The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala. Tissue Cell 4, 529-560. https://doi.org/10.1016/S0040-8166(72)80029-6
- Crozatier, M. and Meister, M. (2007). Drosophila haematopoiesis. Cell. Microbiol. 9, 1117-1126. https://doi.org/10.1111/j.1462-5822.2007.00930.x
- Crozatier, M. and Vincent, A. (2011). Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis. Model. Mech. 4, 439-445. https://doi.org/10.1242/dmm.007351
- Destalminil-Letourneau, M., Morin-Poulard, I., Tian, Y., Vanzo, N., and Crozatier, M. (2021). The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. Elife 10, e64672. https://doi.org/10.7554/eLife.64672
- Dey, N.S., Ramesh, P., Chugh, M., Mandal, S., and Mandal, L. (2016). Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. Elife 5, e18295. https://doi.org/10.7554/elife.18295
- Dey, N.S., Ramesh, P., Chugh, M., Mandal, S., and Mandal, L. (2019). Correction: Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. Elife 8, e51742. https://doi.org/10.7554/elife.51742
- Durand, C. and Dzierzak, E. (2005). Embryonic beginnings of adult hematopoietic stem cells. Haematologica 90, 100-108.
- Dzierzak, E. and Bigas, A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639-651. https://doi.org/10.1016/j.stem.2018.04.015
- El Shatoury, H.H. (1955). The structure of the lymph glands ofDrosophila larvae. Wilhelm Roux Arch. Entwickl. Mech. Org. 147, 489-495. https://doi.org/10.1007/BF00576000
- Evans, C.J., Hartenstein, V., and Banerjee, U. (2003). Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673-690. https://doi.org/10.1016/S1534-5807(03)00335-6
- Ferguson, G.B. and Martinez-Agosto, J.A. (2014). Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena. Fly (Austin) 8, 206-217. https://doi.org/10.1080/19336934.2015.1055427
- Ferguson, G.B. and Martinez-Agosto, J.A. (2017). The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling. Dev. Biol. 425, 21-32. https://doi.org/10.1016/j.ydbio.2017.03.016
- Girard, J.R., Goins, L.M., Vuu, D.M., Sharpley, M.S., Spratford, C.M., Mantri, S.R., and Banerjee, U. (2021). Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. Elife 10, e67516. https://doi.org/10.7554/eLife.67516
- Goyal, M., Tomar, A., Madhwal, S., and Mukherjee, T. (2022). Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 149, dev199550. https://doi.org/10.1242/dev.199550
- Graham, P. and Pick, L. (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol. 121, 397-419. https://doi.org/10.1016/bs.ctdb.2016.07.011
- Hao, Y. and Jin, L.H. (2017). Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. Elife 6, e25094. https://doi.org/10.7554/elife.25094
- Ho, K.Y.L., Khadilkar, R.J., Carr, R.L., and Tanentzapf, G. (2021). A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Curr. Biol. 31, 4697-4712.e6. https://doi.org/10.1016/j.cub.2021.08.027
- Holz, A., Bossinger, B., Strasser, T., Janning, W., and Klapper, R. (2003). The two origins of hemocytes in Drosophia. Development 130, 4955-4962. https://doi.org/10.1242/dev.00702
- Honti, V., Csordas, G., Kurucz, E., Markus, R., and Ando, I. (2014). The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42, 47-56. https://doi.org/10.1016/j.dci.2013.06.005
- Jones, W.D., Cayirlioglu, P., Grunwald Kadow, I., and Vosshall, L.B. (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90. https://doi.org/10.1038/nature05466
- Jung, S.H., Evans, C.J., Uemura, C., and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533. https://doi.org/10.1242/dev.01837
- Kanwal, A., Joshi, P.V., Mandal, S., and Mandal, L. (2021). Ubx-Collier signaling cascade maintains blood progenitors in the posterior lobes of the Drosophila larval lymph gland. PLoS Genet. 17, e1009709. https://doi.org/10.1371/journal.pgen.1009709
- Keebaugh, E. and Schlenke, T. (2014). Insights from natural host-parasite interactions: the Drosophila model. Dev. Comp. Immunol. 42, 111-123. https://doi.org/10.1016/j.dci.2013.06.001
- Kim, H.J., Park, J.W., Kang, J.Y., and Seo, S.B. (2021). Negative regulation of erythroid differentiation via the CBX8-TRIM28 axis. Mol. Cells 44, 444-457. https://doi.org/10.14348/molcells.2021.0012
- Krzemien, J., Crozatier, M., and Vincent, A. (2010a). Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism. Int. J. Dev. Biol. 54, 1117-1125. https://doi.org/10.1387/ijdb.093053jk
- Krzemien, J., Dubois, L., Makki, R., Meister, M., Vincent, A., and Crozatier, M. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325-328. https://doi.org/10.1038/nature05650
- Krzemien, J., Oyallon, J., Crozatier, M., and Vincent, A. (2010b). Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev. Biol. 346, 310-319. https://doi.org/10.1016/j.ydbio.2010.08.003
- Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2007). The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 104, 3574-3578. https://doi.org/10.1073/pnas.0700079104
- Lan, W., Liu, S., Zhao, L., and Su, Y. (2020). Regulation of Drosophila hematopoiesis in lymph gland: from a developmental signaling point of view. Int. J. Mol. Sci. 21, 5246. https://doi.org/10.3390/ijms21155246
- Lanot, R., Zachary, D., Holder, F., and Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257. https://doi.org/10.1006/dbio.2000.0123
- Lebestky, T., Chang, T., Hartenstein, V., and Banerjee, U. (2000). Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146-149. https://doi.org/10.1126/science.288.5463.146
- Lebestky, T., Jung, S.H., and Banerjee, U. (2003). A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348-353. https://doi.org/10.1101/gad.1052803
- Leitao, A.B. and Sucena, E. (2015). Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. Elife 4, e06166. https://doi.org/10.7554/elife.06166
- Lemaitre, B. and Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
- Letourneau, M., Lapraz, F., Sharma, A., Vanzo, N., Waltzer, L., and Crozatier, M. (2016). Drosophila hematopoiesis under normal conditions and in response to immune stress. FEBS Lett. 590, 4034-4051. https://doi.org/10.1002/1873-3468.12327
- Lo, P.C., Skeath, J.B., Gajewski, K., Schulz, R.A., and Frasch, M. (2002). Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Biol. 251, 307-319. https://doi.org/10.1006/dbio.2002.0839
- Madhwal, S., Shin, M., Kapoor, A., Goyal, M., Joshi, M.K., Ur Rehman, P.M., Gor, K., Shim, J., and Mukherjee, T. (2020). Metabolic control of cellular immune-competency by odors in Drosophila. Elife 9, e60376. https://doi.org/10.7554/eLife.60376
- Makhijani, K. and Bruckner, K. (2012). Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. Fly (Austin) 6, 254-260. https://doi.org/10.4161/fly.22267
- Makki, R., Meister, M., Pennetier, D., Ubeda, J.M., Braun, A., Daburon, V., Krzemien, J., Bourbon, H.M., Zhou, R., Vincent, A., et al. (2010). A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol. 8, e1000441. https://doi.org/10.1371/journal.pbio.1000441
- Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee, U. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324. https://doi.org/10.1038/nature05585
- Markus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., Kronhamn, J., Hultmark, D., and Ando, I. (2009). Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 106, 4805-4809. https://doi.org/10.1073/pnas.0801766106
- Meister, M. and Lagueux, M. (2003). Drosophila blood cells. Cell. Microbiol. 5, 573-580. https://doi.org/10.1046/j.1462-5822.2003.00302.x
- Mills, R. and King, R. (1965). The pericardial cells of Drosophila melanogaster. Q. J. Microsc. Sci. 106, 261-268.
- Minakhina, S. and Steward, R. (2010). Hematopoietic stem cells in Drosophila. Development 137, 27-31. https://doi.org/10.1242/dev.043943
- Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., and Banerjee, U. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600. https://doi.org/10.1016/j.cell.2011.11.041
- Morin-Poulard, I., Sharma, A., Louradour, I., Vanzo, N., Vincent, A., and Crozatier, M. (2016). Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat. Commun. 7, 11634. https://doi.org/10.1038/ncomms11634
- Mukherjee, T., Kim, W.S., Mandal, L., and Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213. https://doi.org/10.1126/science.1199643
- Na, J. and Cagan, R. (2013). The Drosophila nephrocyte: back on stage. J. Am. Soc. Nephrol. 24, 161-163. https://doi.org/10.1681/asn.2012121227
- Orkin, S.H. and Zon, L.I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. 3, 323-328. https://doi.org/10.1038/ni0402-323
- Owusu-Ansah, E. and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541. https://doi.org/10.1038/nature08313
- Oyallon, J., Vanzo, N., Krzemien, J., Morin-Poulard, I., Vincent, A., and Crozatier, M. (2016). Two independent functions of Collier/Early B Cell Factor in the control of Drosophila blood cell homeostasis. PLoS One 11, e0148978. https://doi.org/10.1371/journal.pone.0148978
- Pennetier, D., Oyallon, J., Morin-Poulard, I., Dejean, S., Vincent, A., and Crozatier, M. (2012). Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc. Natl. Acad. Sci. U. S. A. 109, 3389-3394. https://doi.org/10.1073/pnas.1109407109
- Petraki, S., Alexander, B., and Bruckner, K. (2015). Assaying blood cell populations of the Drosophila melanogaster larva. J. Vis. Exp. (105), 52733.
- Ramesh, P., Dey, N.S., Kanwal, A., Mandal, S., and Mandal, L. (2021). Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. Elife 10, e67158. https://doi.org/10.7554/eLife.67158
- Rizki, M.T. and Rizki, R.M. (1959). Functional significance of the crystal cells in the larva of Drosophila melanogaster. J. Biophys. Biochem. Cytol. 5, 235-240. https://doi.org/10.1083/jcb.5.2.235
- Rizki, M.T.M. (1957). Alterations in the haemocyte population of Drosophila melanogaster. J. Morphol. 100, 437-458. https://doi.org/10.1002/jmor.1051000303
- Rodrigues, D., Renaud, Y., VijayRaghavan, K., Waltzer, L., and Inamdar, M.S. (2021). Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. Elife 10, e61409. https://doi.org/10.7554/eLife.61409
- Rugendorff, A., Younossi-Hartenstein, A., and Hartenstein, V. (1994). Embryonic origin and differentiation of the Drosophila heart. Rouxs Arch. Dev. Biol. 203, 266-280. https://doi.org/10.1007/BF00360522
- Russo, J., Dupas, S., Frey, F., Carton, Y., and Brehelin, M. (1996). Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112 (Pt 1), 135-142. https://doi.org/10.1017/S0031182000065173
- Sanchez Bosch, P., Makhijani, K., Herboso, L., Gold, K.S., Baginsky, R., Woodcock, K.J., Alexander, B., Kukar, K., Corcoran, S., Jacobs, T., et al. (2019). Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Dev. Cell 51, 787-803.e5. https://doi.org/10.1016/j.devcel.2019.10.017
- Sharma, S.K., Ghosh, S., Geetha, A.R., Mandal, S., and Mandal, L. (2019). Cell adhesion-mediated actomyosin assembly regulates the activity of Cubitus interruptus for hematopoietic progenitor maintenance in Drosophila. Genetics 212, 1279-1300. https://doi.org/10.1534/genetics.119.302209
- Shim, J., Mukherjee, T., and Banerjee, U. (2012). Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat. Cell Biol. 14, 394-400. https://doi.org/10.1038/ncb2453
- Shim, J., Mukherjee, T., Mondal, B.C., Liu, T., Young, G.C., Wijewarnasuriya, D.P., and Banerjee, U. (2013). Olfactory control of blood progenitor maintenance. Cell 155, 1141-1153. https://doi.org/10.1016/j.cell.2013.10.032
- Shrestha, R. and Gateff, E. (1982). Ultrastructure and cytochemistry of the cell-types in the tumorous hematopoietic organs and the hemolymph of the mutant lethal (1) malignant blood neoplasm (l(1)mbn) of Drosophila melanogaster. (drosophila/mutant blood cells/ultrastructure/cytochemistry). Dev. Growth Differ. 24, 83-98. https://doi.org/10.1111/j.1440-169X.1982.00083.x
- Sinenko, S.A., Mandal, L., Martinez-Agosto, J.A., and Banerjee, U. (2009). Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756-763. https://doi.org/10.1016/j.devcel.2009.03.003
- Sinenko, S.A., Shim, J., and Banerjee, U. (2011). Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89. https://doi.org/10.1038/embor.2011.223
- Snodgrass, R.E. (1954). Insect Metamorphosis (Washington: Smithsonian Institution).
- Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243, 65-80. https://doi.org/10.1006/dbio.2001.0542
- Spratford, C.M., Goins, L.M., Chi, F., Girard, J.R., Macias, S.N., Ho, V.W., and Banerjee, U. (2021). Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 148, dev200216. https://doi.org/10.1242/dev.200216
- Swain, A., Inoue, T., Tan, K.S., Nakanishi, Y., and Sugiyama, D. (2014). Intrinsic and extrinsic regulation of mammalian hematopoiesis in the fetal liver. Histol. Histopathol. 29, 1077-1082.
- Tepass, U., Fessler, L.I., Aziz, A., and Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 1829-1837. https://doi.org/10.1242/dev.120.7.1829
- Tokusumi, Y., Tokusumi, T., Shoue, D.A., and Schulz, R.A. (2012). Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PLoS One 7, e41604. https://doi.org/10.1371/journal.pone.0041604
- van Breugel, F., Huda, A., and Dickinson, M.H. (2018). Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila. Nature 564, 420-424. https://doi.org/10.1038/s41586-018-0732-8
- Vermehren-Schmaedick, A., Ainsley, J.A., Johnson, W.A., Davies, S.A., and Morton, D.B. (2010). Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 186, 183-196. https://doi.org/10.1534/genetics.110.118166
- Wang, Y., Pu, Y., and Shen, P. (2013). Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Rep. 3, 820-830. https://doi.org/10.1016/j.celrep.2013.02.003
- Wood, W. and Jacinto, A. (2007). Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat. Rev. Mol. Cell Biol. 8, 542-551. https://doi.org/10.1038/nrm2202
- Yamashita, M., Dellorusso, P.V., Olson, O.C., and Passegue, E. (2020). Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat. Rev. Cancer 20, 365-382. https://doi.org/10.1038/s41568-020-0260-3
- Zhang, C.U., Blauwkamp, T.A., Burby, P.E., and Cadigan, K.M. (2014). Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system. PLoS Genet. 10, e1004509. https://doi.org/10.1371/journal.pgen.1004509
- Zhu, J. and Emerson, S.G. (2002). Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295-3313. https://doi.org/10.1038/sj.onc.1205318