DOI QR코드

DOI QR Code

Intrinsic and Extrinsic Regulation of Hematopoiesis in Drosophila

  • Received : 2021.12.06
  • Accepted : 2022.01.12
  • Published : 2022.03.31

Abstract

Drosophila melanogaster lymph gland, the primary site of hematopoiesis, contains myeloid-like progenitor cells that differentiate into functional hemocytes in the circulation of pupae and adults. Fly hemocytes are dynamic and plastic, and they play diverse roles in the innate immune response and wound healing. Various hematopoietic regulators in the lymph gland ensure the developmental and functional balance between progenitors and mature blood cells. In addition, systemic factors, such as nutrient availability and sensory inputs, integrate environmental variabilities to synchronize the blood development in the lymph gland with larval growth, physiology, and immunity. This review examines the intrinsic and extrinsic factors determining the progenitor states during hemocyte development in the lymph gland and provides new insights for further studies that may extend the frontier of our collective knowledge on hematopoiesis and innate immunity.

Keywords

Acknowledgement

This work was supported by the National Research Foundation (NRF) of Korea (2019R1A2C2006848) to J.S. and the National Research Foundation (NRF) of Korea (2020R1A6A3A13076568) to B.C.

References

  1. Arrese, E.L. and Soulages, J.L. (2010). Insect fat body: energy, metabolism, and regulation. Annu. Rev. Entomol. 55, 207-225. https://doi.org/10.1146/annurev-ento-112408-085356
  2. Banerjee, U., Girard, J.R., Goins, L.M., and Spratford, C.M. (2019). Drosophila as a genetic model for hematopoiesis. Genetics 211, 367-417. https://doi.org/10.1534/genetics.118.300223
  3. Baron, M.H., Isern, J., and Fraser, S.T. (2012). The embryonic origins of erythropoiesis in mammals. Blood 119, 4828-4837. https://doi.org/10.1182/blood-2012-01-153486
  4. Benmimoun, B., Polesello, C., Haenlin, M., and Waltzer, L. (2015). The EBF transcription factor Collier directly promotes Drosophila blood cell progenitor maintenance independently of the niche. Proc. Natl. Acad. Sci. U. S. A. 112, 9052-9057. https://doi.org/10.1073/pnas.1423967112
  5. Benmimoun, B., Polesello, C., Waltzer, L., and Haenlin, M. (2012). Dual role for Insulin/TOR signaling in the control of hematopoietic progenitor maintenance in Drosophila. Development 139, 1713-1717. https://doi.org/10.1242/dev.080259
  6. Blanco-Obregon, D., Katz, M.J., Durrieu, L., Gandara, L., and Wappner, P. (2020). Context-specific functions of Notch in Drosophila blood cell progenitors. Dev. Biol. 462, 101-115. https://doi.org/10.1016/j.ydbio.2020.03.018
  7. Boulan, L., Milan, M., and Leopold, P. (2015). The systemic control of growth. Cold Spring Harb. Perspect. Biol. 7, a019117. https://doi.org/10.1101/cshperspect.a019117
  8. Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., and Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control. Curr. Biol. 11, 213-221. https://doi.org/10.1016/S0960-9822(01)00068-9
  9. Carton, Y., Poirie, M., and Nappi, A.J. (2008). Insect immune resistance to parasitoids. Insect Sci. 15, 67-87. https://doi.org/10.1111/j.1744-7917.2008.00188.x
  10. Chavakis, T., Mitroulis, I., and Hajishengallis, G. (2019). Hematopoietic progenitor cells as integrative hubs for adaptation to and fine-tuning of inflammation. Nat. Immunol. 20, 802-811. https://doi.org/10.1038/s41590-019-0402-5
  11. Cho, B., Spratford, C.M., Yoon, S., Cha, N., Banerjee, U., and Shim, J. (2018). Systemic control of immune cell development by integrated carbon dioxide and hypoxia chemosensation in Drosophila. Nat. Commun. 9, 2679. https://doi.org/10.1038/s41467-018-04990-3
  12. Cho, B., Yoon, S.H., Lee, D., Koranteng, F., Tattikota, S.G., Cha, N., Shin, M., Do, H., Hu, Y., Oh, S.Y., et al. (2020). Single-cell transcriptome maps of myeloid blood cell lineages in Drosophila. Nat. Commun. 11, 4483. https://doi.org/10.1038/s41467-020-18135-y
  13. Crossley, A.C. (1972). The ultrastructure and function of pericardial cells and other nephrocytes in an insect: Calliphora erythrocephala. Tissue Cell 4, 529-560. https://doi.org/10.1016/S0040-8166(72)80029-6
  14. Crozatier, M. and Meister, M. (2007). Drosophila haematopoiesis. Cell. Microbiol. 9, 1117-1126. https://doi.org/10.1111/j.1462-5822.2007.00930.x
  15. Crozatier, M. and Vincent, A. (2011). Drosophila: a model for studying genetic and molecular aspects of haematopoiesis and associated leukaemias. Dis. Model. Mech. 4, 439-445. https://doi.org/10.1242/dmm.007351
  16. Destalminil-Letourneau, M., Morin-Poulard, I., Tian, Y., Vanzo, N., and Crozatier, M. (2021). The vascular niche controls Drosophila hematopoiesis via fibroblast growth factor signaling. Elife 10, e64672. https://doi.org/10.7554/eLife.64672
  17. Dey, N.S., Ramesh, P., Chugh, M., Mandal, S., and Mandal, L. (2016). Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. Elife 5, e18295. https://doi.org/10.7554/elife.18295
  18. Dey, N.S., Ramesh, P., Chugh, M., Mandal, S., and Mandal, L. (2019). Correction: Dpp dependent Hematopoietic stem cells give rise to Hh dependent blood progenitors in larval lymph gland of Drosophila. Elife 8, e51742. https://doi.org/10.7554/elife.51742
  19. Durand, C. and Dzierzak, E. (2005). Embryonic beginnings of adult hematopoietic stem cells. Haematologica 90, 100-108.
  20. Dzierzak, E. and Bigas, A. (2018). Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22, 639-651. https://doi.org/10.1016/j.stem.2018.04.015
  21. El Shatoury, H.H. (1955). The structure of the lymph glands ofDrosophila larvae. Wilhelm Roux Arch. Entwickl. Mech. Org. 147, 489-495. https://doi.org/10.1007/BF00576000
  22. Evans, C.J., Hartenstein, V., and Banerjee, U. (2003). Thicker than blood: conserved mechanisms in Drosophila and vertebrate hematopoiesis. Dev. Cell 5, 673-690. https://doi.org/10.1016/S1534-5807(03)00335-6
  23. Ferguson, G.B. and Martinez-Agosto, J.A. (2014). Kicking it up a Notch for the best in show: Scalloped leads Yorkie into the haematopoietic arena. Fly (Austin) 8, 206-217. https://doi.org/10.1080/19336934.2015.1055427
  24. Ferguson, G.B. and Martinez-Agosto, J.A. (2017). The TEAD family transcription factor Scalloped regulates blood progenitor maintenance and proliferation in Drosophila through PDGF/VEGFR receptor (Pvr) signaling. Dev. Biol. 425, 21-32. https://doi.org/10.1016/j.ydbio.2017.03.016
  25. Girard, J.R., Goins, L.M., Vuu, D.M., Sharpley, M.S., Spratford, C.M., Mantri, S.R., and Banerjee, U. (2021). Paths and pathways that generate cell-type heterogeneity and developmental progression in hematopoiesis. Elife 10, e67516. https://doi.org/10.7554/eLife.67516
  26. Goyal, M., Tomar, A., Madhwal, S., and Mukherjee, T. (2022). Blood progenitor redox homeostasis through olfaction-derived systemic GABA in hematopoietic growth control in Drosophila. Development 149, dev199550. https://doi.org/10.1242/dev.199550
  27. Graham, P. and Pick, L. (2017). Drosophila as a model for diabetes and diseases of insulin resistance. Curr. Top. Dev. Biol. 121, 397-419. https://doi.org/10.1016/bs.ctdb.2016.07.011
  28. Hao, Y. and Jin, L.H. (2017). Dual role for Jumu in the control of hematopoietic progenitors in the Drosophila lymph gland. Elife 6, e25094. https://doi.org/10.7554/elife.25094
  29. Ho, K.Y.L., Khadilkar, R.J., Carr, R.L., and Tanentzapf, G. (2021). A gap-junction-mediated, calcium-signaling network controls blood progenitor fate decisions in hematopoiesis. Curr. Biol. 31, 4697-4712.e6. https://doi.org/10.1016/j.cub.2021.08.027
  30. Holz, A., Bossinger, B., Strasser, T., Janning, W., and Klapper, R. (2003). The two origins of hemocytes in Drosophia. Development 130, 4955-4962. https://doi.org/10.1242/dev.00702
  31. Honti, V., Csordas, G., Kurucz, E., Markus, R., and Ando, I. (2014). The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Dev. Comp. Immunol. 42, 47-56. https://doi.org/10.1016/j.dci.2013.06.005
  32. Jones, W.D., Cayirlioglu, P., Grunwald Kadow, I., and Vosshall, L.B. (2007). Two chemosensory receptors together mediate carbon dioxide detection in Drosophila. Nature 445, 86-90. https://doi.org/10.1038/nature05466
  33. Jung, S.H., Evans, C.J., Uemura, C., and Banerjee, U. (2005). The Drosophila lymph gland as a developmental model of hematopoiesis. Development 132, 2521-2533. https://doi.org/10.1242/dev.01837
  34. Kanwal, A., Joshi, P.V., Mandal, S., and Mandal, L. (2021). Ubx-Collier signaling cascade maintains blood progenitors in the posterior lobes of the Drosophila larval lymph gland. PLoS Genet. 17, e1009709. https://doi.org/10.1371/journal.pgen.1009709
  35. Keebaugh, E. and Schlenke, T. (2014). Insights from natural host-parasite interactions: the Drosophila model. Dev. Comp. Immunol. 42, 111-123. https://doi.org/10.1016/j.dci.2013.06.001
  36. Kim, H.J., Park, J.W., Kang, J.Y., and Seo, S.B. (2021). Negative regulation of erythroid differentiation via the CBX8-TRIM28 axis. Mol. Cells 44, 444-457. https://doi.org/10.14348/molcells.2021.0012
  37. Krzemien, J., Crozatier, M., and Vincent, A. (2010a). Ontogeny of the Drosophila larval hematopoietic organ, hemocyte homeostasis and the dedicated cellular immune response to parasitism. Int. J. Dev. Biol. 54, 1117-1125. https://doi.org/10.1387/ijdb.093053jk
  38. Krzemien, J., Dubois, L., Makki, R., Meister, M., Vincent, A., and Crozatier, M. (2007). Control of blood cell homeostasis in Drosophila larvae by the posterior signalling centre. Nature 446, 325-328. https://doi.org/10.1038/nature05650
  39. Krzemien, J., Oyallon, J., Crozatier, M., and Vincent, A. (2010b). Hematopoietic progenitors and hemocyte lineages in the Drosophila lymph gland. Dev. Biol. 346, 310-319. https://doi.org/10.1016/j.ydbio.2010.08.003
  40. Kwon, J.Y., Dahanukar, A., Weiss, L.A., and Carlson, J.R. (2007). The molecular basis of CO2 reception in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 104, 3574-3578. https://doi.org/10.1073/pnas.0700079104
  41. Lan, W., Liu, S., Zhao, L., and Su, Y. (2020). Regulation of Drosophila hematopoiesis in lymph gland: from a developmental signaling point of view. Int. J. Mol. Sci. 21, 5246. https://doi.org/10.3390/ijms21155246
  42. Lanot, R., Zachary, D., Holder, F., and Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Dev. Biol. 230, 243-257. https://doi.org/10.1006/dbio.2000.0123
  43. Lebestky, T., Chang, T., Hartenstein, V., and Banerjee, U. (2000). Specification of Drosophila hematopoietic lineage by conserved transcription factors. Science 288, 146-149. https://doi.org/10.1126/science.288.5463.146
  44. Lebestky, T., Jung, S.H., and Banerjee, U. (2003). A Serrate-expressing signaling center controls Drosophila hematopoiesis. Genes Dev. 17, 348-353. https://doi.org/10.1101/gad.1052803
  45. Leitao, A.B. and Sucena, E. (2015). Drosophila sessile hemocyte clusters are true hematopoietic tissues that regulate larval blood cell differentiation. Elife 4, e06166. https://doi.org/10.7554/elife.06166
  46. Lemaitre, B. and Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu. Rev. Immunol. 25, 697-743. https://doi.org/10.1146/annurev.immunol.25.022106.141615
  47. Letourneau, M., Lapraz, F., Sharma, A., Vanzo, N., Waltzer, L., and Crozatier, M. (2016). Drosophila hematopoiesis under normal conditions and in response to immune stress. FEBS Lett. 590, 4034-4051. https://doi.org/10.1002/1873-3468.12327
  48. Lo, P.C., Skeath, J.B., Gajewski, K., Schulz, R.A., and Frasch, M. (2002). Homeotic genes autonomously specify the anteroposterior subdivision of the Drosophila dorsal vessel into aorta and heart. Dev. Biol. 251, 307-319. https://doi.org/10.1006/dbio.2002.0839
  49. Madhwal, S., Shin, M., Kapoor, A., Goyal, M., Joshi, M.K., Ur Rehman, P.M., Gor, K., Shim, J., and Mukherjee, T. (2020). Metabolic control of cellular immune-competency by odors in Drosophila. Elife 9, e60376. https://doi.org/10.7554/eLife.60376
  50. Makhijani, K. and Bruckner, K. (2012). Of blood cells and the nervous system: hematopoiesis in the Drosophila larva. Fly (Austin) 6, 254-260. https://doi.org/10.4161/fly.22267
  51. Makki, R., Meister, M., Pennetier, D., Ubeda, J.M., Braun, A., Daburon, V., Krzemien, J., Bourbon, H.M., Zhou, R., Vincent, A., et al. (2010). A short receptor downregulates JAK/STAT signalling to control the Drosophila cellular immune response. PLoS Biol. 8, e1000441. https://doi.org/10.1371/journal.pbio.1000441
  52. Mandal, L., Martinez-Agosto, J.A., Evans, C.J., Hartenstein, V., and Banerjee, U. (2007). A Hedgehog- and Antennapedia-dependent niche maintains Drosophila haematopoietic precursors. Nature 446, 320-324. https://doi.org/10.1038/nature05585
  53. Markus, R., Laurinyecz, B., Kurucz, E., Honti, V., Bajusz, I., Sipos, B., Somogyi, K., Kronhamn, J., Hultmark, D., and Ando, I. (2009). Sessile hemocytes as a hematopoietic compartment in Drosophila melanogaster. Proc. Natl. Acad. Sci. U. S. A. 106, 4805-4809. https://doi.org/10.1073/pnas.0801766106
  54. Meister, M. and Lagueux, M. (2003). Drosophila blood cells. Cell. Microbiol. 5, 573-580. https://doi.org/10.1046/j.1462-5822.2003.00302.x
  55. Mills, R. and King, R. (1965). The pericardial cells of Drosophila melanogaster. Q. J. Microsc. Sci. 106, 261-268.
  56. Minakhina, S. and Steward, R. (2010). Hematopoietic stem cells in Drosophila. Development 137, 27-31. https://doi.org/10.1242/dev.043943
  57. Mondal, B.C., Mukherjee, T., Mandal, L., Evans, C.J., Sinenko, S.A., Martinez-Agosto, J.A., and Banerjee, U. (2011). Interaction between differentiating cell- and niche-derived signals in hematopoietic progenitor maintenance. Cell 147, 1589-1600. https://doi.org/10.1016/j.cell.2011.11.041
  58. Morin-Poulard, I., Sharma, A., Louradour, I., Vanzo, N., Vincent, A., and Crozatier, M. (2016). Vascular control of the Drosophila haematopoietic microenvironment by Slit/Robo signalling. Nat. Commun. 7, 11634. https://doi.org/10.1038/ncomms11634
  59. Mukherjee, T., Kim, W.S., Mandal, L., and Banerjee, U. (2011). Interaction between Notch and Hif-alpha in development and survival of Drosophila blood cells. Science 332, 1210-1213. https://doi.org/10.1126/science.1199643
  60. Na, J. and Cagan, R. (2013). The Drosophila nephrocyte: back on stage. J. Am. Soc. Nephrol. 24, 161-163. https://doi.org/10.1681/asn.2012121227
  61. Orkin, S.H. and Zon, L.I. (2002). Hematopoiesis and stem cells: plasticity versus developmental heterogeneity. Nat. Immunol. 3, 323-328. https://doi.org/10.1038/ni0402-323
  62. Owusu-Ansah, E. and Banerjee, U. (2009). Reactive oxygen species prime Drosophila haematopoietic progenitors for differentiation. Nature 461, 537-541. https://doi.org/10.1038/nature08313
  63. Oyallon, J., Vanzo, N., Krzemien, J., Morin-Poulard, I., Vincent, A., and Crozatier, M. (2016). Two independent functions of Collier/Early B Cell Factor in the control of Drosophila blood cell homeostasis. PLoS One 11, e0148978. https://doi.org/10.1371/journal.pone.0148978
  64. Pennetier, D., Oyallon, J., Morin-Poulard, I., Dejean, S., Vincent, A., and Crozatier, M. (2012). Size control of the Drosophila hematopoietic niche by bone morphogenetic protein signaling reveals parallels with mammals. Proc. Natl. Acad. Sci. U. S. A. 109, 3389-3394. https://doi.org/10.1073/pnas.1109407109
  65. Petraki, S., Alexander, B., and Bruckner, K. (2015). Assaying blood cell populations of the Drosophila melanogaster larva. J. Vis. Exp. (105), 52733.
  66. Ramesh, P., Dey, N.S., Kanwal, A., Mandal, S., and Mandal, L. (2021). Relish plays a dynamic role in the niche to modulate Drosophila blood progenitor homeostasis in development and infection. Elife 10, e67158. https://doi.org/10.7554/eLife.67158
  67. Rizki, M.T. and Rizki, R.M. (1959). Functional significance of the crystal cells in the larva of Drosophila melanogaster. J. Biophys. Biochem. Cytol. 5, 235-240. https://doi.org/10.1083/jcb.5.2.235
  68. Rizki, M.T.M. (1957). Alterations in the haemocyte population of Drosophila melanogaster. J. Morphol. 100, 437-458. https://doi.org/10.1002/jmor.1051000303
  69. Rodrigues, D., Renaud, Y., VijayRaghavan, K., Waltzer, L., and Inamdar, M.S. (2021). Differential activation of JAK-STAT signaling reveals functional compartmentalization in Drosophila blood progenitors. Elife 10, e61409. https://doi.org/10.7554/eLife.61409
  70. Rugendorff, A., Younossi-Hartenstein, A., and Hartenstein, V. (1994). Embryonic origin and differentiation of the Drosophila heart. Rouxs Arch. Dev. Biol. 203, 266-280. https://doi.org/10.1007/BF00360522
  71. Russo, J., Dupas, S., Frey, F., Carton, Y., and Brehelin, M. (1996). Insect immunity: early events in the encapsulation process of parasitoid (Leptopilina boulardi) eggs in resistant and susceptible strains of Drosophila. Parasitology 112 (Pt 1), 135-142. https://doi.org/10.1017/S0031182000065173
  72. Sanchez Bosch, P., Makhijani, K., Herboso, L., Gold, K.S., Baginsky, R., Woodcock, K.J., Alexander, B., Kukar, K., Corcoran, S., Jacobs, T., et al. (2019). Adult Drosophila lack hematopoiesis but rely on a blood cell reservoir at the respiratory epithelia to relay infection signals to surrounding tissues. Dev. Cell 51, 787-803.e5. https://doi.org/10.1016/j.devcel.2019.10.017
  73. Sharma, S.K., Ghosh, S., Geetha, A.R., Mandal, S., and Mandal, L. (2019). Cell adhesion-mediated actomyosin assembly regulates the activity of Cubitus interruptus for hematopoietic progenitor maintenance in Drosophila. Genetics 212, 1279-1300. https://doi.org/10.1534/genetics.119.302209
  74. Shim, J., Mukherjee, T., and Banerjee, U. (2012). Direct sensing of systemic and nutritional signals by haematopoietic progenitors in Drosophila. Nat. Cell Biol. 14, 394-400. https://doi.org/10.1038/ncb2453
  75. Shim, J., Mukherjee, T., Mondal, B.C., Liu, T., Young, G.C., Wijewarnasuriya, D.P., and Banerjee, U. (2013). Olfactory control of blood progenitor maintenance. Cell 155, 1141-1153. https://doi.org/10.1016/j.cell.2013.10.032
  76. Shrestha, R. and Gateff, E. (1982). Ultrastructure and cytochemistry of the cell-types in the tumorous hematopoietic organs and the hemolymph of the mutant lethal (1) malignant blood neoplasm (l(1)mbn) of Drosophila melanogaster. (drosophila/mutant blood cells/ultrastructure/cytochemistry). Dev. Growth Differ. 24, 83-98. https://doi.org/10.1111/j.1440-169X.1982.00083.x
  77. Sinenko, S.A., Mandal, L., Martinez-Agosto, J.A., and Banerjee, U. (2009). Dual role of wingless signaling in stem-like hematopoietic precursor maintenance in Drosophila. Dev. Cell 16, 756-763. https://doi.org/10.1016/j.devcel.2009.03.003
  78. Sinenko, S.A., Shim, J., and Banerjee, U. (2011). Oxidative stress in the haematopoietic niche regulates the cellular immune response in Drosophila. EMBO Rep. 13, 83-89. https://doi.org/10.1038/embor.2011.223
  79. Snodgrass, R.E. (1954). Insect Metamorphosis (Washington: Smithsonian Institution).
  80. Sorrentino, R.P., Carton, Y., and Govind, S. (2002). Cellular immune response to parasite infection in the Drosophila lymph gland is developmentally regulated. Dev. Biol. 243, 65-80. https://doi.org/10.1006/dbio.2001.0542
  81. Spratford, C.M., Goins, L.M., Chi, F., Girard, J.R., Macias, S.N., Ho, V.W., and Banerjee, U. (2021). Intermediate progenitor cells provide a transition between hematopoietic progenitors and their differentiated descendants. Development 148, dev200216. https://doi.org/10.1242/dev.200216
  82. Swain, A., Inoue, T., Tan, K.S., Nakanishi, Y., and Sugiyama, D. (2014). Intrinsic and extrinsic regulation of mammalian hematopoiesis in the fetal liver. Histol. Histopathol. 29, 1077-1082.
  83. Tepass, U., Fessler, L.I., Aziz, A., and Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development 120, 1829-1837. https://doi.org/10.1242/dev.120.7.1829
  84. Tokusumi, Y., Tokusumi, T., Shoue, D.A., and Schulz, R.A. (2012). Gene regulatory networks controlling hematopoietic progenitor niche cell production and differentiation in the Drosophila lymph gland. PLoS One 7, e41604. https://doi.org/10.1371/journal.pone.0041604
  85. van Breugel, F., Huda, A., and Dickinson, M.H. (2018). Distinct activity-gated pathways mediate attraction and aversion to CO2 in Drosophila. Nature 564, 420-424. https://doi.org/10.1038/s41586-018-0732-8
  86. Vermehren-Schmaedick, A., Ainsley, J.A., Johnson, W.A., Davies, S.A., and Morton, D.B. (2010). Behavioral responses to hypoxia in Drosophila larvae are mediated by atypical soluble guanylyl cyclases. Genetics 186, 183-196. https://doi.org/10.1534/genetics.110.118166
  87. Wang, Y., Pu, Y., and Shen, P. (2013). Neuropeptide-gated perception of appetitive olfactory inputs in Drosophila larvae. Cell Rep. 3, 820-830. https://doi.org/10.1016/j.celrep.2013.02.003
  88. Wood, W. and Jacinto, A. (2007). Drosophila melanogaster embryonic haemocytes: masters of multitasking. Nat. Rev. Mol. Cell Biol. 8, 542-551. https://doi.org/10.1038/nrm2202
  89. Yamashita, M., Dellorusso, P.V., Olson, O.C., and Passegue, E. (2020). Dysregulated haematopoietic stem cell behaviour in myeloid leukaemogenesis. Nat. Rev. Cancer 20, 365-382. https://doi.org/10.1038/s41568-020-0260-3
  90. Zhang, C.U., Blauwkamp, T.A., Burby, P.E., and Cadigan, K.M. (2014). Wnt-mediated repression via bipartite DNA recognition by TCF in the Drosophila hematopoietic system. PLoS Genet. 10, e1004509. https://doi.org/10.1371/journal.pgen.1004509
  91. Zhu, J. and Emerson, S.G. (2002). Hematopoietic cytokines, transcription factors and lineage commitment. Oncogene 21, 3295-3313. https://doi.org/10.1038/sj.onc.1205318