DOI QR코드

DOI QR Code

N-Terminal Modifications of Ubiquitin via Methionine Excision, Deamination, and Arginylation Expand the Ubiquitin Code

  • Nguyen, Kha The (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Ju, Shinyeong (Center for Theragnosis, Korea Institute of Science and Technology) ;
  • Kim, Sang-Yoon (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Chang-Seok (Department of Life Sciences, Pohang University of Science and Technology) ;
  • Lee, Cheolju (Center for Theragnosis, Korea Institute of Science and Technology) ;
  • Hwang, Cheol-Sang (Department of Life Sciences, Pohang University of Science and Technology)
  • Received : 2021.11.19
  • Accepted : 2022.01.12
  • Published : 2022.03.31

Abstract

Ubiquitin (Ub) is post-translationally modified by Ub itself or Ub-like proteins, phosphorylation, and acetylation, among others, which elicits a variety of Ub topologies and cellular functions. However, N-terminal (Nt) modifications of Ub remain unknown, except the linear head-to-tail ubiquitylation via Nt-Met. Here, using the yeast Saccharomyces cerevisiae and an Nt-arginylated Ub-specific antibody, we found that the detectable level of Ub undergoes Nt-Met excision, Nt-deamination, and Nt-arginylation. The resulting Nt-arginylated Ub and its conjugated proteins are upregulated in the stationary-growth phase or by oxidative stress. We further proved the existence of Nt-arginylated Ub in vivo and identified Nt-arginylated Ub-protein conjugates using stable isotope labeling by amino acids in cell culture (SILAC)-based tandem mass spectrometry. In silico structural modeling of Nt-arginylated Ub predicted that Nt-Arg flexibly protrudes from the surface of the Ub, thereby most likely providing a docking site for the factors that recognize it. Collectively, these results reveal unprecedented Nt-arginylated Ub and the pathway by which it is produced, which greatly expands the known complexity of the Ub code.

Keywords

Acknowledgement

We are grateful to the current and former members of the Hwang and Lee laboratories for their assistance and advice. We also thank Edanz (www.edanz.com/ac) for editing a draft of this manuscript. This work was supported by grants from the Korean Government (MSIP) NRF-2020R1A3B2078127 and NRF2017R1A5A1015366 (C.-S.H.) and NRF-2020R1A2C2003685 (C.L.), and the BK21 Plus program (C.-S.H.).

References

  1. Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
  2. Brademan, D.R., Riley, N.M., Kwiecien, N.W., and Coon, J.J. (2019). Interactive Peptide Spectral Annotator: a versatile web-based tool for proteomic applications. Mol. Cell. Proteomics 18(8 suppl 1), S193-S201. https://doi.org/10.1074/mcp.TIR118.001209
  3. Catanzariti, A.M., Soboleva, T.A., Jans, D.A., Board, P.G., and Baker, R.T. (2004). An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331-1339. https://doi.org/10.1110/ps.04618904
  4. Chen, L. and Kashina, A. (2021). Post-translational modifications of the protein termini. Front. Cell Dev. Biol. 9, 719590. https://doi.org/10.3389/fcell.2021.719590
  5. Chen, S.J., Kim, L., Song, H.K., and Varshavsky, A. (2021). Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway. Proc. Natl. Acad. Sci. U. S. A. 118, e2115430118. https://doi.org/10.1073/pnas.2115430118
  6. Chen, S.J., Wu, X., Wadas, B., Oh, J.H., and Varshavsky, A. (2017). An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655. https://doi.org/10.1126/science.aal3655
  7. Choi, W.S., Jeong, B.C., Joo, Y.J., Lee, M.R., Kim, J., Eck, M.J., and Song, H.K. (2010). Structure basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17, 1175-1181. https://doi.org/10.1038/nsmb.1907
  8. Dittmar, G. and Selbach, M. (2017). Deciphering the ubiquitin code. Mol. Cell 65, 779-780. https://doi.org/10.1016/j.molcel.2017.02.011
  9. Dohmen, R.J., Stappen, R., McGrath, J.P., Forrova, H., Kolarov, J., Goffeau, A., and Varshavsky, A. (1995). An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270, 18099-18109. https://doi.org/10.1074/jbc.270.30.18099
  10. Gietz, R.D. and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34. https://doi.org/10.1038/nprot.2007.13
  11. Giglione, C., Boularot, A., and Meinnel, T. (2004). Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455-1474.
  12. Hwang, C.S., Shemorry, A., and Varshavsky, A. (2010). N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977. https://doi.org/10.1126/science.1183147
  13. Iwai, K., Fujita, H., and Sasaki, Y. (2014). Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15, 503-508. https://doi.org/10.1038/nrm3836
  14. Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962. https://doi.org/10.1002/yea.1142
  15. Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
  16. Kim, H.K., Kim, R.R., Oh, J.H., Cho, H., Varshavsky, A., and Hwang, C.S. (2014). The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158-169. https://doi.org/10.1016/j.cell.2013.11.031
  17. Kim, J.M. and Hwang, C.S. (2014). Crosstalk between the Arg/N-end and Ac/N-end rule. Cell Cycle 13, 1366-1367. https://doi.org/10.4161/cc.28751
  18. Kim, J.M., Seok, O.H., Ju, S., Heo, J.E., Yeom, J., Kim, D.S., Yoo, J.Y., Varshavsky, A., Lee, C., and Hwang, C.S. (2018). Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science 362, eaat0174. https://doi.org/10.1126/science.aat0174
  19. Kim, K., Park, S.J., Na, S., Kim, J.S., Choi, H., Kim, Y.K., Paek, E., and Lee, C. (2013). Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex. PLoS One 8, e81734. https://doi.org/10.1371/journal.pone.0081734
  20. Kim, S. and Pevzner, P.A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5, 5277. https://doi.org/10.1038/ncomms6277
  21. Kirkpatrick, D.S., Denison, C., and Gygi, S.P. (2005). Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell Biol. 7, 750-757. https://doi.org/10.1038/ncb0805-750
  22. Komander, D. and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229. https://doi.org/10.1146/annurev-biochem-060310-170328
  23. Kwon, Y.T. and Ciechanover, A. (2017). The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873-886. https://doi.org/10.1016/j.tibs.2017.09.002
  24. Lee, K.E., Heo, J.E., Kim, J.M., and Hwang, C.S. (2016). N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Mol. Cells 39, 169-178. https://doi.org/10.14348/MOLCELLS.2016.2329
  25. Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002-2009. https://doi.org/10.1523/JNEUROSCI.4474-04.2005
  26. Mattiroli, F. and Penengo, L. (2021). Histone ubiquitination: an integrative signaling platform in genome stability. Trends Genet. 37, 566-581. https://doi.org/10.1016/j.tig.2020.12.005
  27. Nguyen, K.T., Kim, J.M., Park, S.E., and Hwang, C.S. (2019). N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway. J. Biol. Chem. 294, 4464-4476. https://doi.org/10.1074/jbc.ra118.006913
  28. Nguyen, K.T., Mun, S.H., Lee, C.S., and Hwang, C.S. (2018). Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp. Mol. Med. 50, 91.
  29. Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
  30. Redman, K. and Rubenstein, P.A. (1981). NH2-terminal processing of Dictyostelium discoideum actin in vitro. J. Biol. Chem. 256, 13226-13229. https://doi.org/10.1016/S0021-9258(18)43032-3
  31. Ree, R., Varland, S., and Arnesen, T. (2018). Spotlight on protein N-terminal acetylation. Exp. Mol. Med. 50, 90.
  32. Sadis, S., Atienza, C., Jr., and Finley, D. (1995). Synthetic signals for ubiquitin-dependent proteolysis. Mol. Cell. Biol. 15, 4086-4094. https://doi.org/10.1128/MCB.15.8.4086
  33. Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551. https://doi.org/10.1016/j.molcel.2013.03.018
  34. Sherman, F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
  35. Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
  36. Steinegger, M. and Soding, J. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026-1028. https://doi.org/10.1038/nbt.3988
  37. Swatek, K.N. and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399-422. https://doi.org/10.1038/cr.2016.39
  38. Szoradi, T., Schaeff, K., Garcia-Rivera, E.M., Itzhak, D.N., Schmidt, R.M., Bircham, P.W., Leiss, K., Diaz-Miyar, J., Chen, V.K., Muzzey, D., et al. (2018). SHRED is a regulatory cascade that reprograms Ubr1 substrate specificity for enhanced protein quality control during stress. Mol. Cell 70, 1025-1037.e5. https://doi.org/10.1016/j.molcel.2018.04.027
  39. Tasaki, T., Sriram, S.M., Park, K.S., and Kwon, Y.T. (2012). The N-end rule pathway. Annu. Rev. Biochem. 81, 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
  40. Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proc. Natl. Acad. Sci. U. S. A. 116, 358-366. https://doi.org/10.1073/pnas.1816596116