Acknowledgement
We are grateful to the current and former members of the Hwang and Lee laboratories for their assistance and advice. We also thank Edanz (www.edanz.com/ac) for editing a draft of this manuscript. This work was supported by grants from the Korean Government (MSIP) NRF-2020R1A3B2078127 and NRF2017R1A5A1015366 (C.-S.H.) and NRF-2020R1A2C2003685 (C.L.), and the BK21 Plus program (C.-S.H.).
References
- Bachmair, A., Finley, D., and Varshavsky, A. (1986). In vivo half-life of a protein is a function of its amino-terminal residue. Science 234, 179-186. https://doi.org/10.1126/science.3018930
- Brademan, D.R., Riley, N.M., Kwiecien, N.W., and Coon, J.J. (2019). Interactive Peptide Spectral Annotator: a versatile web-based tool for proteomic applications. Mol. Cell. Proteomics 18(8 suppl 1), S193-S201. https://doi.org/10.1074/mcp.TIR118.001209
- Catanzariti, A.M., Soboleva, T.A., Jans, D.A., Board, P.G., and Baker, R.T. (2004). An efficient system for high-level expression and easy purification of authentic recombinant proteins. Protein Sci. 13, 1331-1339. https://doi.org/10.1110/ps.04618904
- Chen, L. and Kashina, A. (2021). Post-translational modifications of the protein termini. Front. Cell Dev. Biol. 9, 719590. https://doi.org/10.3389/fcell.2021.719590
- Chen, S.J., Kim, L., Song, H.K., and Varshavsky, A. (2021). Aminopeptidases trim Xaa-Pro proteins, initiating their degradation by the Pro/N-degron pathway. Proc. Natl. Acad. Sci. U. S. A. 118, e2115430118. https://doi.org/10.1073/pnas.2115430118
- Chen, S.J., Wu, X., Wadas, B., Oh, J.H., and Varshavsky, A. (2017). An N-end rule pathway that recognizes proline and destroys gluconeogenic enzymes. Science 355, eaal3655. https://doi.org/10.1126/science.aal3655
- Choi, W.S., Jeong, B.C., Joo, Y.J., Lee, M.R., Kim, J., Eck, M.J., and Song, H.K. (2010). Structure basis for the recognition of N-end rule substrates by the UBR box of ubiquitin ligases. Nat. Struct. Mol. Biol. 17, 1175-1181. https://doi.org/10.1038/nsmb.1907
- Dittmar, G. and Selbach, M. (2017). Deciphering the ubiquitin code. Mol. Cell 65, 779-780. https://doi.org/10.1016/j.molcel.2017.02.011
- Dohmen, R.J., Stappen, R., McGrath, J.P., Forrova, H., Kolarov, J., Goffeau, A., and Varshavsky, A. (1995). An essential yeast gene encoding a homolog of ubiquitin-activating enzyme. J. Biol. Chem. 270, 18099-18109. https://doi.org/10.1074/jbc.270.30.18099
- Gietz, R.D. and Schiestl, R.H. (2007). High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 31-34. https://doi.org/10.1038/nprot.2007.13
- Giglione, C., Boularot, A., and Meinnel, T. (2004). Protein N-terminal methionine excision. Cell. Mol. Life Sci. 61, 1455-1474.
- Hwang, C.S., Shemorry, A., and Varshavsky, A. (2010). N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327, 973-977. https://doi.org/10.1126/science.1183147
- Iwai, K., Fujita, H., and Sasaki, Y. (2014). Linear ubiquitin chains: NF-kappaB signalling, cell death and beyond. Nat. Rev. Mol. Cell Biol. 15, 503-508. https://doi.org/10.1038/nrm3836
- Janke, C., Magiera, M.M., Rathfelder, N., Taxis, C., Reber, S., Maekawa, H., Moreno-Borchart, A., Doenges, G., Schwob, E., Schiebel, E., et al. (2004). A versatile toolbox for PCR-based tagging of yeast genes: new fluorescent proteins, more markers and promoter substitution cassettes. Yeast 21, 947-962. https://doi.org/10.1002/yea.1142
- Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Zidek, A., Potapenko, A., et al. (2021). Highly accurate protein structure prediction with AlphaFold. Nature 596, 583-589. https://doi.org/10.1038/s41586-021-03819-2
- Kim, H.K., Kim, R.R., Oh, J.H., Cho, H., Varshavsky, A., and Hwang, C.S. (2014). The N-terminal methionine of cellular proteins as a degradation signal. Cell 156, 158-169. https://doi.org/10.1016/j.cell.2013.11.031
- Kim, J.M. and Hwang, C.S. (2014). Crosstalk between the Arg/N-end and Ac/N-end rule. Cell Cycle 13, 1366-1367. https://doi.org/10.4161/cc.28751
- Kim, J.M., Seok, O.H., Ju, S., Heo, J.E., Yeom, J., Kim, D.S., Yoo, J.Y., Varshavsky, A., Lee, C., and Hwang, C.S. (2018). Formyl-methionine as an N-degron of a eukaryotic N-end rule pathway. Science 362, eaat0174. https://doi.org/10.1126/science.aat0174
- Kim, K., Park, S.J., Na, S., Kim, J.S., Choi, H., Kim, Y.K., Paek, E., and Lee, C. (2013). Reinvestigation of aminoacyl-tRNA synthetase core complex by affinity purification-mass spectrometry reveals TARSL2 as a potential member of the complex. PLoS One 8, e81734. https://doi.org/10.1371/journal.pone.0081734
- Kim, S. and Pevzner, P.A. (2014). MS-GF+ makes progress towards a universal database search tool for proteomics. Nat. Commun. 5, 5277. https://doi.org/10.1038/ncomms6277
- Kirkpatrick, D.S., Denison, C., and Gygi, S.P. (2005). Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics. Nat. Cell Biol. 7, 750-757. https://doi.org/10.1038/ncb0805-750
- Komander, D. and Rape, M. (2012). The ubiquitin code. Annu. Rev. Biochem. 81, 203-229. https://doi.org/10.1146/annurev-biochem-060310-170328
- Kwon, Y.T. and Ciechanover, A. (2017). The ubiquitin code in the ubiquitin-proteasome system and autophagy. Trends Biochem. Sci. 42, 873-886. https://doi.org/10.1016/j.tibs.2017.09.002
- Lee, K.E., Heo, J.E., Kim, J.M., and Hwang, C.S. (2016). N-terminal acetylation-targeted N-end rule proteolytic system: the Ac/N-end rule pathway. Mol. Cells 39, 169-178. https://doi.org/10.14348/MOLCELLS.2016.2329
- Lim, K.L., Chew, K.C., Tan, J.M., Wang, C., Chung, K.K., Zhang, Y., Tanaka, Y., Smith, W., Engelender, S., Ross, C.A., et al. (2005). Parkin mediates nonclassical, proteasomal-independent ubiquitination of synphilin-1: implications for Lewy body formation. J. Neurosci. 25, 2002-2009. https://doi.org/10.1523/JNEUROSCI.4474-04.2005
- Mattiroli, F. and Penengo, L. (2021). Histone ubiquitination: an integrative signaling platform in genome stability. Trends Genet. 37, 566-581. https://doi.org/10.1016/j.tig.2020.12.005
- Nguyen, K.T., Kim, J.M., Park, S.E., and Hwang, C.S. (2019). N-terminal methionine excision of proteins creates tertiary destabilizing N-degrons of the Arg/N-end rule pathway. J. Biol. Chem. 294, 4464-4476. https://doi.org/10.1074/jbc.ra118.006913
- Nguyen, K.T., Mun, S.H., Lee, C.S., and Hwang, C.S. (2018). Control of protein degradation by N-terminal acetylation and the N-end rule pathway. Exp. Mol. Med. 50, 91.
- Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605-1612. https://doi.org/10.1002/jcc.20084
- Redman, K. and Rubenstein, P.A. (1981). NH2-terminal processing of Dictyostelium discoideum actin in vitro. J. Biol. Chem. 256, 13226-13229. https://doi.org/10.1016/S0021-9258(18)43032-3
- Ree, R., Varland, S., and Arnesen, T. (2018). Spotlight on protein N-terminal acetylation. Exp. Mol. Med. 50, 90.
- Sadis, S., Atienza, C., Jr., and Finley, D. (1995). Synthetic signals for ubiquitin-dependent proteolysis. Mol. Cell. Biol. 15, 4086-4094. https://doi.org/10.1128/MCB.15.8.4086
- Shemorry, A., Hwang, C.S., and Varshavsky, A. (2013). Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol. Cell 50, 540-551. https://doi.org/10.1016/j.molcel.2013.03.018
- Sherman, F. (2002). Getting started with yeast. Methods Enzymol. 350, 3-41. https://doi.org/10.1016/S0076-6879(02)50954-X
- Sriram, S.M., Kim, B.Y., and Kwon, Y.T. (2011). The N-end rule pathway: emerging functions and molecular principles of substrate recognition. Nat. Rev. Mol. Cell Biol. 12, 735-747. https://doi.org/10.1038/nrm3217
- Steinegger, M. and Soding, J. (2017). MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026-1028. https://doi.org/10.1038/nbt.3988
- Swatek, K.N. and Komander, D. (2016). Ubiquitin modifications. Cell Res. 26, 399-422. https://doi.org/10.1038/cr.2016.39
- Szoradi, T., Schaeff, K., Garcia-Rivera, E.M., Itzhak, D.N., Schmidt, R.M., Bircham, P.W., Leiss, K., Diaz-Miyar, J., Chen, V.K., Muzzey, D., et al. (2018). SHRED is a regulatory cascade that reprograms Ubr1 substrate specificity for enhanced protein quality control during stress. Mol. Cell 70, 1025-1037.e5. https://doi.org/10.1016/j.molcel.2018.04.027
- Tasaki, T., Sriram, S.M., Park, K.S., and Kwon, Y.T. (2012). The N-end rule pathway. Annu. Rev. Biochem. 81, 261-289. https://doi.org/10.1146/annurev-biochem-051710-093308
- Varshavsky, A. (2019). N-degron and C-degron pathways of protein degradation. Proc. Natl. Acad. Sci. U. S. A. 116, 358-366. https://doi.org/10.1073/pnas.1816596116