DOI QR코드

DOI QR Code

LncRNA H19 Drives Proliferation of Cardiac Fibroblasts and Collagen Production via Suppression of the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β Axis

  • Guo, Feng (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Tang, Chengchun (Department of Cardiology, Zhongda Hospital Southeast University) ;
  • Huang, Bo (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Gu, Lifei (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Zhou, Jun (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Mo, Zongyang (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Liu, Chang (Department of Cardiology, Shanghai Electric Power Hospital) ;
  • Liu, Yuqing (Department of Emergency, Naval Characteristic Medical Center Affiliated to Shanghai, Naval Medical University)
  • Received : 2021.03.07
  • Accepted : 2021.09.29
  • Published : 2022.03.31

Abstract

The aim of this study was to investigating whether lncRNA H19 promotes myocardial fibrosis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis. Patients with atrial fibrillation (AF) and healthy volunteers were included in the study, and their biochemical parameters were collected. In addition, pcDNA3.1-H19, si-H19, and miR-29a/b-3p mimic/inhibitor were transfected into cardiac fibroblasts (CFs), and proliferation of CFs was detected by MTT assay. Expression of H19 and miR-29a/b-3p were detected using real-time quantitative polymerase chain reaction, and expression of α-smooth muscle actin (α-SMA), collagen I, collagen II, matrix metalloproteinase-2 (MMP-2), and elastin were measured by western blot analysis. The dual luciferase reporter gene assay was carried out to detect the sponging relationship between H19 and miR-29a/b-3p in CFs. Compared with healthy volunteers, the level of plasma H19 was significantly elevated in patients with AF, while miR-29a-3p and miR-29b-3p were markedly depressed (P < 0.05). Serum expression of lncRNA H19 was negatively correlated with the expression of miR-29a-3p and miR-29b-3p among patients with AF (rs = -0.337, rs = -0.236). Moreover, up-regulation of H19 expression and down-regulation of miR-29a/b-3p expression facilitated proliferation and synthesis of extracellular matrix (ECM)-related proteins. SB431542 and si-VEGFA are able to reverse the promotion of miR-29a/b-3p on proliferation of CFs and ECM-related protein synthesis. The findings of the present study suggest that H19 promoted CF proliferation and collagen synthesis by suppressing the miR-29a-3p/miR-29b-3p-VEGFA/TGF-β axis, and provide support for a potential new direction for the treatment of AF.

Keywords

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (81970237).

References

  1. Abonnenc, M., Nabeebaccus, A.A., Mayr, U., Barallobre-Barreiro, J., Dong, X., Cuello, F., Sur, S., Drozdov, I., Langley, S.R., Lu, R., et al. (2013). Extracellular matrix secretion by cardiac fibroblasts: role of microRNA-29b and microRNA-30c. Circ. Res. 113, 1138-1147. https://doi.org/10.1161/CIRCRESAHA.113.302400
  2. Bauersachs, J. (2010). Regulation of myocardial fibrosis by MicroRNAs. J. Cardiovasc. Pharmacol. 56, 454-459. https://doi.org/10.1097/FJC.0b013e3181ee81df
  3. Bhatt, H.V. and Fischer, G.W. (2015). Atrial fibrillation: pathophysiology and therapeutic options. J. Cardiothorac. Vasc. Anesth. 29, 1333-1340. https://doi.org/10.1053/j.jvca.2015.05.058
  4. Brundel, B.J., Van Gelder, I.C., Henning, R.H., Tieleman, R.G., Tuinenburg, A.E., Wietses, M., Grandjean, J.G., Van Gilst, W.H., and Crijns, H.J. (2001). Ion channel remodeling is related to intraoperative atrial effective refractory periods in patients with paroxysmal and persistent atrial fibrillation. Circulation 103, 684-690. https://doi.org/10.1161/01.CIR.103.5.684
  5. Dawson, K., Wakili, R., Ordog, B., Clauss, S., Chen, Y., Iwasaki, Y., Voigt, N., Qi, X.Y., Sinner, M.F., Dobrev, D., et al. (2013). MicroRNA29: a mechanistic contributor and potential biomarker in atrial fibrillation. Circulation 127, 1466-1475, 1475e1461-1428.
  6. Dobrev, D. and Nattel, S. (2008). Calcium handling abnormalities in atrial fibrillation as a target for innovative therapeutics. J. Cardiovasc. Pharmacol. 52, 293-299. https://doi.org/10.1097/FJC.0b013e318171924d
  7. Edgley, A.J., Krum, H., and Kelly, D.J. (2012). Targeting fibrosis for the treatment of heart failure: a role for transforming growth factor-beta. Cardiovasc. Ther. 30, e30-e40. https://doi.org/10.1111/j.1755-5922.2010.00228.x
  8. Fuster, V., Ryden, L.E., Asinger, R.W., Cannom, D.S., Crijns, H.J., Frye, R.L., Halperin, J.L., Kay, G.N., Klein, W.W., Levy, S., et al. (2001). ACC/AHA/ESC guidelines for the management of patients with atrial fibrillation. A report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines and Policy Conferences (Committee to develop guidelines for the management of patients with atrial fibrillation) developed in collaboration with the North American Society of Pacing and Electrophysiology. Eur. Heart J. 22, 1852-1923. https://doi.org/10.1053/euhj.2001.2983
  9. Guo, S., Meng, X.W., Yang, X.S., Liu, X.F., Ou-Yang, C.H., and Liu, C. (2018). Curcumin administration suppresses collagen synthesis in the hearts of rats with experimental diabetes. Acta Pharmacol. Sin. 39, 195-204. https://doi.org/10.1038/aps.2017.92
  10. Han, P., Li, W., Lin, C.H., Yang, J., Shang, C., Nuernberg, S.T., Jin, K.K., Xu, W., Lin, C.Y., Lin, C.J., et al. (2014). A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514, 102-106. https://doi.org/10.1038/nature13596
  11. Hennemeier, I., Humpf, H.U., Gekle, M., and Schwerdt, G. (2014). Role of microRNA-29b in the ochratoxin A-induced enhanced collagen formation in human kidney cells. Toxicology 324, 116-122. https://doi.org/10.1016/j.tox.2014.07.012
  12. January, C.T., Wann, L.S., Alpert, J.S., Calkins, H., Cigarroa, J.E., Cleveland, J.C., Jr., Conti, J.B., Ellinor, P.T., Ezekowitz, M.D., Field, M.E., et al. (2014). 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 64, e1-e76. https://doi.org/10.1016/j.jacc.2014.04.029
  13. Karreth, F.A., Tay, Y., Perna, D., Ala, U., Tan, S.M., Rust, A.G., DeNicola, G., Webster, K.A., Weiss, D., Perez-Mancera, P.A., et al. (2011). In vivo identification of tumor- suppressive PTEN ceRNAs in an oncogenic BRAF-induced mouse model of melanoma. Cell 147, 382-395. https://doi.org/10.1016/j.cell.2011.09.032
  14. Koch, S., Tugues, S., Li, X., Gualandi, L., and Claesson-Welsh, L. (2011). Signal transduction by vascular endothelial growth factor receptors. Biochem. J. 437, 169-183. https://doi.org/10.1042/BJ20110301
  15. Lee, K.W., Everett, T.H., 4th, Rahmutula, D., Guerra, J.M., Wilson, E., Ding, C., and Olgin, J.E. (2006). Pirfenidone prevents the development of a vulnerable substrate for atrial fibrillation in a canine model of heart failure. Circulation 114, 1703-1712. https://doi.org/10.1161/CIRCULATIONAHA.106.624320
  16. Li, J., Guo, Z.Y., Gao, X.H., Bian, Q., Jia, M., Lai, X.L., Wang, T.Y., Bian, X.L., and Wang, H.Y. (2015). Low molecular weight heparin (LMWH) improves peritoneal function and inhibits peritoneal fibrosis possibly through suppression of HIF-1alpha, VEGF and TGF-beta1. PLoS One 10, e0118481. https://doi.org/10.1371/journal.pone.0118481
  17. Maurer, B., Stanczyk, J., Jungel, A., Akhmetshina, A., Trenkmann, M., Brock, M., Kowal-Bielecka, O., Gay, R.E., Michel, B.A., Distler, J.H., et al. (2010). MicroRNA-29, a key regulator of collagen expression in systemic sclerosis. Arthritis Rheum. 62, 1733-1743.
  18. Mir, S.A., Chatterjee, A., Mitra, A., Pathak, K., Mahata, S.K., and Sarkar, S. (2012). Inhibition of signal transducer and activator of transcription 3 (STAT3) attenuates interleukin-6 (IL-6)-induced collagen synthesis and resultant hypertrophy in rat heart. J. Biol. Chem. 287, 2666-2677. https://doi.org/10.1074/jbc.M111.246173
  19. Nattel, S., Burstein, B., and Dobrev, D. (2008). Atrial remodeling and atrial fibrillation: mechanisms and implications. Circ. Arrhythm. Electrophysiol. 1, 62-73. https://doi.org/10.1161/CIRCEP.107.754564
  20. Neef, S., Dybkova, N., Sossalla, S., Ort, K.R., Fluschnik, N., Neumann, K., Seipelt, R., Schondube, F.A., Hasenfuss, G., and Maier, L.S. (2010). CaMKII-dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ. Res. 106, 1134-1144. https://doi.org/10.1161/CIRCRESAHA.109.203836
  21. Rahman, F., Kwan, G.F., and Benjamin, E.J. (2014). Global epidemiology of atrial fibrillation. Nat. Rev. Cardiol. 11, 639-654. https://doi.org/10.1038/nrcardio.2014.118
  22. Ramdas, V., McBride, M., Denby, L., and Baker, A.H. (2013). Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29. Am. J. Pathol. 183, 1885-1896. https://doi.org/10.1016/j.ajpath.2013.08.027
  23. Ren, X.P., Wu, J., Wang, X., Sartor, M.A., Jones, K., Qian, J., Nicolaou, P., Pritchard, T.J., and Fan, G.C. (2009). MicroRNA-320 is involved in the regulation of cardiac ischemia/reperfusion injury by targeting heat-shock protein 20. Circulation 119, 2357-2366. https://doi.org/10.1161/CIRCULATIONAHA.108.814145
  24. Salmena, L., Poliseno, L., Tay, Y., Kats, L., and Pandolfi, P.P. (2011). A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146, 353-358. https://doi.org/10.1016/j.cell.2011.07.014
  25. Shan, H., Zhang, Y., Lu, Y., Zhang, Y., Pan, Z., Cai, B., Wang, N., Li, X., Feng, T., Hong, Y., et al. (2009). Downregulation of miR-133 and miR-590 contributes to nicotine-induced atrial remodelling in canines. Cardiovasc. Res. 83, 465-472. https://doi.org/10.1093/cvr/cvp130
  26. Sheng, J., Shim, W., Wei, H., Lim, S.Y., Liew, R., Lim, T.S., Ong, B.H., Chua, Y.L., and Wong, P. (2013). Hydrogen sulphide suppresses human atrial fibroblast proliferation and transformation to myofibroblasts. J. Cell. Mol. Med. 17, 1345-1354. https://doi.org/10.1111/jcmm.12114
  27. Smadja, D.M., Nunes, H., Juvin, K., Bertil, S., Valeyre, D., Gaussem, P., and Israel-Biet, D. (2014). Increase in both angiogenic and angiostatic mediators in patients with idiopathic pulmonary fibrosis. Pathol. Biol. (Paris) 62, 391-394. https://doi.org/10.1016/j.patbio.2014.07.006
  28. Tao, H., Cao, W., Yang, J.J., Shi, K.H., Zhou, X., Liu, L.P., and Li, J. (2016). Long noncoding RNA H19 controls DUSP5/ERK1/2 axis in cardiac fibroblast proliferation and fibrosis. Cardiovasc. Pathol. 25, 381-389. https://doi.org/10.1016/j.carpath.2016.05.005
  29. Tao, H., Shi, K.H., Yang, J.J., Huang, C., Zhan, H.Y., and Li, J. (2014a). Histone deacetylases in cardiac fibrosis: current perspectives for therapy. Cell. Signal. 26, 521-527. https://doi.org/10.1016/j.cellsig.2013.11.037
  30. Tao, H., Yang, J.J., Chen, Z.W., Xu, S.S., Zhou, X., Zhan, H.Y., and Shi, K.H. (2014b). DNMT3A silencing RASSF1A promotes cardiac fibrosis through upregulation of ERK1/2. Toxicology 323, 42-50. https://doi.org/10.1016/j.tox.2014.06.006
  31. Tao, H., Yang, J.J., Shi, K.H., Deng, Z.Y., and Li, J. (2014c). DNA methylation in cardiac fibrosis: new advances and perspectives. Toxicology 323, 125-129. https://doi.org/10.1016/j.tox.2014.07.002
  32. Tay, Y., Kats, L., Salmena, L., Weiss, D., Tan, S.M., Ala, U., Karreth, F., Poliseno, L., Provero, P., Di Cunto, F., et al. (2011). Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147, 344-357. https://doi.org/10.1016/j.cell.2011.09.029
  33. Uchida, S. and Dimmeler, S. (2015). Long noncoding RNAs in cardiovascular diseases. Circ. Res. 116, 737-750. https://doi.org/10.1161/CIRCRESAHA.116.302521
  34. van Rooij, E., Sutherland, L.B., Liu, N., Williams, A.H., McAnally, J., Gerard, R.D., Richardson, J.A., and Olson, E.N. (2006). A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc. Natl. Acad. Sci. U. S. A. 103, 18255-18260. https://doi.org/10.1073/pnas.0608791103
  35. van Rooij, E., Sutherland, L.B., Thatcher, J.E., DiMaio, J.M., Naseem, R.H., Marshall, W.S., Hill, J.A., and Olson, E.N. (2008). Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis. Proc. Natl. Acad. Sci. U. S. A. 105, 13027-13032. https://doi.org/10.1073/pnas.0805038105
  36. Wang, K., Liu, F., Zhou, L.Y., Long, B., Yuan, S.M., Wang, Y., Liu, C.Y., Sun, T., Zhang, X.J., and Li, P.F. (2014). The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ. Res. 114, 1377-1388. https://doi.org/10.1161/CIRCRESAHA.114.302476
  37. Wang, K., Long, B., Zhou, J., and Li, P.F. (2010). miR-9 and NFATc3 regulate myocardin in cardiac hypertrophy. J. Biol. Chem. 285, 11903-11912. https://doi.org/10.1074/jbc.M109.098004
  38. Wang, X., Liu, T., Zhao, Z., and Li, G. (2015). Noncoding RNA in cardiac fibrosis. Int. J. Cardiol. 187, 365-368. https://doi.org/10.1016/j.ijcard.2015.03.195
  39. Yan, Z., Qu, K., Zhang, J., Huang, Q., Qu, P., Xu, X., Yuan, P., Huang, X., Shao, Y., Liu, C., et al. (2015). CD147 promotes liver fibrosis progression via VEGF-A/VEGFR2 signalling-mediated cross-talk between hepatocytes and sinusoidal endothelial cells. Clin. Sci. (Lond.) 129, 699-710. https://doi.org/10.1042/CS20140823
  40. Yang, L., Engeland, C.G., and Cheng, B. (2013). Social isolation impairs oral palatal wound healing in sprague-dawley rats: a role for miR-29 and mR-203 via VEGF suppression. PLoS One 8, e72359. https://doi.org/10.1371/journal.pone.0072359
  41. Zhang, Y., Huang, X.R., Wei, L.H., Chung, A.C., Yu, C.M., and Lan, H.Y. (2014). miR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling. Mol. Ther. 22, 974-985. https://doi.org/10.1038/mt.2014.25