

Two New Flavanones from the Leaves of *Flemingia lineata* (L.) Aiton

Mulyadi Tanjung^{1,*}, Tjitjik Srie Tjahjandarie¹, Shola Mardhiyyah¹, Ghinsha Zakatina Rahman¹, Muhammad Fajar Aldin¹, Ratih Dewi Saputri², and Norizan Ahmat³

¹Natural Products Chemistry Research Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia
²Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Negeri Surabaya, Surabaya 60231, Indonesia
³Faculty of Applied Sciences, Universiti Teknologi MARA 40450 Shah Alam, Selangor, Malaysia

Abstract – Three isoprenylated flavanones were isolated from the leaves of *Flemingia lineata* (L.) Aiton. Among them are two new flavanones, flemilineatins A and B (**1-2**), along with 6-isoprenyl eridioctyol (**3**). Their structures were determined using HRESIMS data and NMR spectra. Flavanones **1-3** were assayed in the HeLa cancer cells. Compound **1** showed moderate activity with an IC_{50} value of 11.2 μ M. **Keywords** – *Flemingia lineata*, flemilineatins A-B, flavanone, cytotoxicity

Introduction

Flemingia lineata (L.) Aiton, belonging to the Fabaceae family, is a fast-growing shrub native to Southeast Asia and Australia. *F. lineata*, commonly called as otok-otok in Java, is used to soil erosion control and provide organic manure. The leaves also cure scabies, fever, and inflammation.¹ The *Flemingia* genus produces flavonoids and isoflavonoids with a terpenyl side chain.²⁻³ The presence of these terpenyl side chains enhances biological activities such as cytotoxic, antioxidant, and estrogenic properties.⁴⁻⁷ Flemilineatins A (1) and B (2), two new flavanones, along with 6-isoprenyl eridioctyol (3) (Fig. 1), were isolated from *F. lineata* leaves, and their cytotoxic effects on HeLa cells were reported here.

Experimental

General experimental procedures – UV spectra were performed with a UV-VIS spectrophotometer (Shimadzu series 1800). The functional groups were recorded using an FT-IR spectrophotometer (Shimadzu IR Tracer 100). The mass molecule and the chemical formula were recorded using an ESI-TOF (Waters- LCT Premier XE). NMR spectra (JEOL JNM ECA-400) at 400 MHz for ¹H NMR and 100 MHz for ¹³C NMR were measured using TMS as the internal standard and acetone- d_6 ($\delta_{\rm H}$ 2.04 and $\delta_{\rm C}$ 29.8, respectively) as reference standards. For column and radial chromatography, silica gel 60 and silica gel 60 PF₂₅₄ were employed, respectively. The optical rotation was measured with a polarimeter (Perkin Elmer Model 341).

Plant material – In February 2020, the fresh leaves of *F. lineata* were collected in Kemiren Village, Banyuwangi, East Java, Indonesia. A senior botanist (Ismail Rachman) from the Bogoriense Herbarium identified the plant. As a reference, a specimen (FL 20200218) was deposited.

Extraction and isolation – The dried leaves of *F. lineata* (8.1 kg) were extracted for a week with 90% methanol and then successively partitioned with *n*-hexane and ethyl acetate. The ethyl acetate extract (98 g) was separated on silica gel by column chromatography, using an *n*-hexane-ethyl acetate gradient (from 19:1 to 7:3 v/v) to yield three fractions A–C. Sephadex LH-20 column chromatography, eluting with methanol, divided fraction B into two subfractions, B₁–B₂. Compounds **1** (28 mg), **2** (9 mg) and **3** (18 mg) were obtained from fraction B₁ after separation by silica gel radial chromatography, eluting with *n*-hexane-chloroform gradient (from 19:1 to 3:7 v/v).

Flemilineatin A (1) – yellowish oil, $[\alpha]^{20}{}_{\rm D} = -3.2^{\circ}$ (*c* 0.05, MeOH): UV (MeOH) $\lambda_{\rm max}$ (log ε) 224 (4.52); 292 (4.17) and 343 nm (3.52). Table 1 shows the NMR data of **1**. HRESIMS m/z [M+H]⁺ calculated for C₃₀H₃₇O₆ m/z

^{*}Author for correspondence

Mulyadi Tanjung, Natural Products Chemistry Research Group, Organic Chemistry Division, Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, Indonesia

Tel: +62-31-5936501; E-mail: mulyadi-t@fst.unair.ac.id

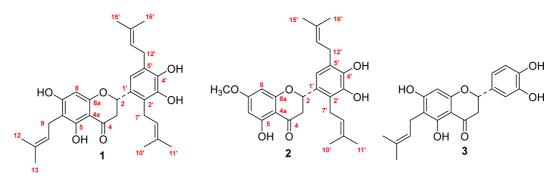


Fig. 1. Structures of flavanones isolated from F. lineata leaves.

493.2649, found 493.2643.

Flemilineatin B (2) – yellowish oil, $[α]^{20}{}_{D} = -3.1^{\circ}$ (*c* 0.05, MeOH): UV (MeOH) $λ_{max}$ (log ε) 226 (4.50); 289 (4.20) and 341 nm (3.51). Table 1 shows the NMR data of **2**. HRESIMS *m/z* [M+H]⁺ calculated for C₂₆H₃₁O₆ *m/z* 439.2121, found 439.2112.

6-Isoprenyl eridioctyol (3) – yellowish oil, UV (MeOH) λ_{max} (log ε) 226 (4.34); 295 (4.27) and 339 nm (3.45). The NMR data of **3** have been compared with the literature data.⁸

Cytotoxicity assay – In 96-well plates, HeLa cells were cultivated at a density of 3×10^4 cells/cm³. For growth, the cells were incubated at 37° C for 24 hours. The isolates (1–3) were added to each well in triplicate with varying concentrations (100, 30, 10, 3, 1, 0.3, and 0.1 µM) and incubated at 37° C for 48 hours. After incubation, the MTT reagent was applied to the culture cells and allowed to sit for four hours. A microplate reader spectrometer set to λ 540 nm was used to measure the inhibition of cells by the isolates (1–3) was recorded.⁹⁻¹¹ Regression analysis was used to get the IC₅₀ values of the isolates (1–3).

Results and discussion

Flemilineatin A (1) was isolated as a yellowish oil. The HRESIMS revealed the $[M+H]^+$ ion at m/z 493.2643 (calcd 493.2649), corresponding to the chemical formula $C_{30}H_{37}O_6$. The UV spectrum in MeOH (λ_{max} 224, 292, and 343 nm) revealed the presence of a flavanone core.¹² The NMR data revealed the presence of an oxymethine proton [δ_H 5.66 (1H, dd, J = 13.0, 3.0 Hz, H-2), δ_C 77.1 (C-2)], distinct methylene protons [δ_H 3.13 (1H, dd, J = 17.1, 13.0 Hz, H-3_{ax}), 2.62 (1H, dd, J = 17.1, 3.0 Hz, H-3_{eq}), δ_C 43.3 (C-3)], and a conjugated carbonyl at δ_C 197.7 (C-4), which are characteristics for flavanone moiety.¹³ Compound 1 also featured two protons of two aromatic units at δ_H 6.00 (1H, *s*, H-8) for ring A, δ_H 6.91 (1H, *s*, H-

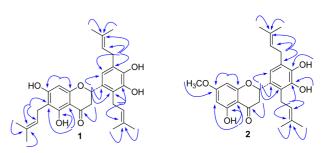


Fig. 2. HMBC of flemilineatins A (1) and B (2).

6') for ring B, and a hydroxy proton at $\delta_{\rm H}$ 12.47 (1H, s, 5-OH). In addition, three isoprenyl protons were visible, including three olefinic protons [$\delta_{\rm H}$ 5.32 (1H, t, J=7.3 Hz, H-13'), 5.22 (1H, t, J = 7.3 Hz, H-10), 5.11 (1H, t, t) J = 6.6 Hz, H-8')], three methylene protons [$\delta_{\rm H}$ 3.48 (2H, d, J = 6.9 Hz, H-7'), 3.35 (2H, d, J = 7.2 Hz, H-12'), 3.24 (2H, d, J = 7.1 Hz, H-9)], and six methyl protons [$\delta_{\rm H}$ 1.74 (3H, s, H-11'), 1.69 (6H, s, H-12/H-15'), 1.65 (3H, s, H-10'), 1.63 (3H, s, H-16'), 1.62 (3H, s, H-13)]. The ¹³C NMR spectrum of flemilineatin A showed the signal of 28 carbons in the structure, including five oxyaryl carbons $[\delta_{\rm C} 164.6, 162.2, 162.1, 144.1, 143.9]$, indicating that the flavanone structure is an eriodictyol derivative. The isoprenyl groups in the flavanone structure were identified using the HMBC spectrum (Fig. 2). The chelated proton at $\delta_{\rm H}$ 12.47 (5-OH) correlated to an oxyaryl at $\delta_{\rm C}$ 162.2 (C-5) and two carbon signals at $\delta_{\rm C}$ 103.0 (C-4a), and 108.9 (C-6). A methylene proton at $\delta_{\rm H}$ 3.24 (H-9) correlated to C-5, C-6, $\delta_{\rm C}$ 164.6 (C-7), a methine carbon at $\delta_{\rm C}$ 123.5 (C-10), and a carbon signal at $\delta_{\rm C}$ 131.5 (C-11), indicating an isoprenyl chain was located at C-6. Two methyl protons at $\delta_{\rm H}$ 1.69 (H-12) and 1.62 (H-13) from the isoprenyl chain correlated to C-10 and C-11 in favor of isoprenyl bound at C-6. An aromatic proton at $\delta_{\rm H}$ 6.00 (H-8) correlated to C-4a, C-6, C-7, and oxyaryl at $\delta_{\rm C}$ 162.1 (C-8a), was supported the location of an isoprenyl at C-6. An aromatic proton (ring B) at $\delta_{\rm H}$ 6.91 (H-6')

	1			2		
No. C	$\delta_{\rm H}$ (mult, J in Hz)	δ_{C}	HMBC	$\delta_{\rm H}$ (mult, J in Hz)	δ_{C}	HMBC
2	5.66 (<i>dd</i> , 13.0; 2.8)	77.1	C-1′, C-2′, C-6′	5.61 (<i>dd</i> , 13.0; 2.9)	77.3	C-1′, C-2′, C-6′
3	3.13 (<i>dd</i> , 17.1; 13.0) 2.62 (<i>dd</i> , 17.1; 3,0)	43.3	C-2. C-4	3.18 (<i>dd</i> , 17.2; 13.0) 2.67 (<i>dd</i> , 17.2; 2.9)	43.2	C-2, C-4
4	-	197.7	-	-	198.0	-
4a	-	103.0	-	-	103.7	-
5	-	162.2	-	-	165.0	-
6	-	108.9	-	6.01 (<i>d</i> , 2.2)	94.5	C-4a, C-7, C-8
7	-	164.6	-	-	168.7	-
8	6.00 (s)	95.2	C-4a, C-6, C-7, C-8a	6.02 (<i>d</i> , 2.2)	95.4	C-4a, C-6, C-7, C-8a
8a	-	162.1	-	-	-	-
9	3.24 (<i>d</i> , 7.1)	21.6	C-5, C-6, C-7, C-10, C-11	-	-	-
10	5.22 (<i>t</i> , 7.3)	123.5	C-12, C-13	-	-	-
11	-	131.5	-	-	-	-
12	1.69 (s)	25.7	C-10, C-11, C-13	-	-	-
13	1.62 (s)	17,8	C-10, C-11, C-12	-	-	-
1′	-	129.4	-	-	129.2	-
2′	-	125.8	-	-	125.8	-
3′	-	143.9	-	-	144.0	-
4′	-	144.1	-	-	144.1	-
5′	-	127.0	-	-	127.0	-
6′	6.91 (s)	119.6	C-2, C-2', C-4', C-12'	6.92 (s)	119.6	C-2, C-1', C-4', C-1'''
7′	3.48 (<i>d</i> , 6.9)	25.3	C-2′, C-3′, C-8′	3.49 (<i>d</i> , 6.7)	25.3	C-3', C-7', C-8'
8'	5.11 (<i>t</i> , 6.6)	124.3	C-10′, C-11′	5.12 (<i>t</i> , 6.7)	124.3	C-10′, C-11′
9'	-	131.2	-	-	132.8	-
10'	1.65 (s)	25.8	C-8′, C-9′, C-11′	1.69 (s)	17,8	C-8′, C-9′, C-11′
11'	1.74 (s)	17.8	C-8′, C-9′, C-10′	1.63 (s)	25.7	C-8′, C-9′, C-10′
12'	3.35 (<i>d</i> , 7.2)	29.1	C-5', C-6', C-13', C-14'	3.35 (<i>d</i> , 7.2)	29.1	C-4′, C-13′, C-14′
13'	5.32 (<i>t</i> , 7.3)	123.3	C-15′, C-16′	5.32 (<i>t</i> , 7.3)	123.3	C-15′, C-16′
14'	-	132.8	-	-	131.5	-
15'	1,69 (s)	25.8	C-13', C-14', C-16'	1.70 (s)	17.9	C-13', C-14', C-16'
16'	1.63 (s)	18.0	C-13', C-14', C-15'	1.64 (s)	25.8	C-13', C-14', C-15'
3′-OH	-	-	-	7.33 (s)	-	C-2′, C-3′
4′-OH	-	-	-	7.52 (s)	-	C-4′, C-5′
5-OH	12.47 (s)	-	C-4a, C-5, C-6	12.15 (s)	-	C-4a, C-5, C-6
7-OCH ₃	-	-	-	3.83 (s)	56.2	C-7

Table 1. ¹H (400 MHz), ¹³C NMR (100 MHz) data of 1 and 2 in acetone-d₆

Table 2. Cytotoxic data of compounds 1-3

Compounds	IC ₅₀ (µM)			
	HeLa	MCF-7		
Flemilineatin A (1)	11.2 ± 0.3	36.4 ± 1.5		
Flemilineatin B (2)	>100	80.5 ± 1.2		
6-Isoprenyl eriodictyol (3)	>100	>100		
Doxorubicin	4.5 ± 0.1	5.0 ± 0.2		

correlated to C-2, an oxyaryl at δ_C 144.1 (C-4'), a carbon signal at δ_C 103.0 (C-2'), and methylene at δ_C 29.1 (C-

12'), indicating two isoprenyl chains were located at C-2' and C-5' in the ring B of eriodictyol structure. A methylene proton of 2-methyl-2-butenyl at $\delta_{\rm H}$ 3.48 (H-7') correlated to an oxyaryl carbon at $\delta_{\rm C}$ 143.9 (C-3'), a methine carbon at $\delta_{\rm C}$ 124.3 (C-8'), and a carbon signal at $\delta_{\rm C}$ 131.2 (C-9'), indicating that isoprenyl chain attached at C-2'. The long-range correlation between two methyl protons [$\delta_{\rm H}$ 1.65 (H-10'), 1.74 (H-11')] to C-8', C-9', and an olefinic proton at $\delta_{\rm H}$ 5.11 (H-8') to signals $\delta_{\rm C}$ 25.8 (C-10') and $\delta_{\rm C}$ 17.8 (C-11'), showing the isoprenyl located at

C-2'. The methylene carbon at $\delta_{\rm C}$ 29.1 (C-12') in the HMQC spectrum exhibits direct connectivity with the proton signal at $\delta_{\rm H}$ 3.35. The methylene proton at $\delta_{\rm H}$ 3.35 (H-12') linked to C-4', two methine carbons [$\delta_{\rm C}$ 119.6 (C-6'), 123.3 (C-13')], and two carbon signals [$\delta_{\rm C}$ 127.0 (C-5'), 132.8 (C-14')], indicating that an isoprenyl located at C-5' (ring B). The stereochemistry of flemilineatin A at C-2 was determined to be *S* due to the negative specific rotation.¹²⁻¹³ In summary, the structure of flemilineatin A was determined to be (*S*)-6,2',5'-triisoprenyl-5,7,3',4'-tetrahydroxyflavanone.

Flemilineatin B (2) was isolated as a yellowish oil. The HRESIMS exhibited the $[M+H]^+$ ion at m/z 439.2112 (calcd 439.2121), consistent with the molecular formula $C_{26}H_{31}O_6$. The ¹H and ¹³C NMR data of flemilineatin B were very similar to those of compound 1, particularly at ring C [$\delta_{\rm H}$ 5.61 (H-2), 3.18 (H-3_{ax}), 2.67 (H-3_{eq}), $\delta_{\rm C}$ 77.3 (C-2), 43.2 (C-3), 198.0 (C-4)]. The presence of an aromatic group [$\delta_{\rm H}$ 6.92 (H-6'), $\delta_{\rm C}$ 119.6 (C-6')] and two isoprenyl chains [$\delta_{\rm H}$ 5.32 (H-13'), 5.12 (H-7'), 3.49 (H-8'), 3.35 (H-12'), 1.70 (H-15'), 1.69 (H-10'), 1.64 (H-16'), 1.63 (H-11'), $\delta_{\rm C}$ 132.8 (C-9'), 131.5 (C-14'), 124.3 (C-8'), 123.3 (C-13'), 29.1 (C-12'), 25.8 (C-16'), 25.7 (C-11'), 25.3 (C-7'), 17.9 (C-15'), 17.8 (C-10')] at ring B very similar to that of flemilineatin A. A pair of doublet protons (J=2.2 Hz) at δ_{H} 6.01 (H-6), 6.02 (H-8), a chelated proton at $\delta_{\rm H}$ 12.15 (5-OH), and a methoxy proton at $\delta_{\rm H}$ 3.83 (7-OCH₃) in the ring A were striking differences in the ¹H NMR data of compound 2. Signals for 28 carbons were identified in the ¹³C NMR spectrum. The HMBC spectrum (Fig. 2), a chelated signal at $\delta_{\rm H}$ 12.15 (5-OH) correlated to a methine at $\delta_{\rm C}$ 94.5 (C-6), an oxyaryl at $\delta_{\rm C}$ 165.0 (C-5), and a carbon signal at $\delta_{\rm C}$ 103.7 (C-4a). The aromatic proton at $\delta_{\rm H}$ 6.01 (H-6) correlated to C-4a, an oxyaryl at $\delta_{\rm C}$ 164.6 (C-7), and a methine at $\delta_{\rm C}$ 95.4 (C-8), while a methoxy group at $\delta_{\rm H}$ 3.83 corresponded to C-7. The location of a methoxy group at to C-7 supports the long-range correlation between H-8 to C-4a, C-6, C-7, and an oxyaryl at $\delta_{\rm C}$ 164.4 (C-8a). Due to the negative specific rotation, the stereochemistry of compound 2 at C-2 was also verified to be S^{12-13} As a result, the structure of flemilineatin B was determined to be (S)-2',5'-diisoprenyl-5,3',4'-trihydroxy-7-methoxyflavanone.

The MTT technique was used to investigate the cytotoxicity of compounds **1–4** against HeLa cells. Negative controls included cells that had not been exposed to the active compound, while positive controls included doxorubicin.¹⁴⁻¹⁵ Flemilineatin A (**1**) showed moderate activity with an IC₅₀ value of 11.2 μ M, and

compounds (2-3) did not affect the HeLa cells. The presence of the isoprenyl chain at C-6 of 1 increases activity than compound 2, and the existing two 2-methyl-2-butenyl chains at C-2' and C-5' of 1 more than active with compound 3 against HeLa cells.¹⁵⁻¹⁶

In conclusion, two new flavanones, flemilineatins A and B (1-2), along with 6-isoprenyl eriodictyol (3), were isolated from the leaves of *F. lineata*. Compound 1 showed moderate activity against HeLa cells, and compounds (2-3) were inactive.

Acknowledgments

Universitas Airlangga, Surabaya, Indonesia, provided financial assistance for this research (Penelitian Dasar Unggulan Perguruan Tinggi, No. 468/UN3.15/PT/2021 by Mulyadi Tanjung).

References

(1) Heyne, K. The useful Indonesian Plants; Research and Development Agency, Ministry of Forestry: Indonesia, **1987**, p 2114.

- (2) Tjahjandarie, T. S.; Tanjung, M.; Saputri, R. D.; Aldin, M. F.; Susanti, R. A.; Pertiwi, N. P.; Wibawa, R. S.; Halizah, I. N. *Phytochem. Lett.* **2021**, *44*, 78-81.
- (3) Rahman, M. M.; Sarker, D. S.; Byres, M.; Gray, A. I. J. Nat. Prod. **2004**, *67*, 402-406.
- (4) Fu, M.; Deng, D.; Huang, R.; Zhang, N.; Su, Z.; Qiu, S. X. Nat. Prod. Res. 2013, 27, 1237-1241.
- (5) Gumula, I.; Alao, J. P.; Ndiege, I. O.; Sannerhagen, P.; Yenesew, A.; Erdelyi, M. J. Nat. Prod. 2014, 77, 2060-2067.
- (6) Li, L.; Deng, X.; Zhang, L.; Shu, P.; Qin, M. *Fitoterapia* **2011**, *82*, 615-619.
- (7) Xie, G.; Lin, B.; Qin, X.; Wang, G.; Wang, Q.; Yuan, J.; Li, C.; Qin, M. *Fitoterapia*, **2015**, 110, 97-101.
- (8) Marliana, E.; Astuti, W.; Kosala, K.; Hairani, R.; Tjahjandarie, T. S.; Tanjung, M. Asian J. Chem. **2018**, *30*, 795-798.
- (9) Saputri, R. D.; Tjahjandarie, T. S.; Tanjung, M. Nat. Prod. Res. 2021, 35, 1256-1261.
- (10) Tanjung, M.; Tjahjandarie, T. S.; Saputri, R. D.; Kurnia, B. D.; Rachman, M. F.; Syah, Y. M. *Nat. Prod. Res.* **2021**, *35*, 407-412.
- (11) Tjahjandarie, T. S.; Tanjung, M.; Saputri, R. D.; Rahayu, D. O.; Gunawan, A. N. I.; Aldin, M. F. *Nat. Prod. Res.* **2021**, *35*, 5637-5642.
- (12) Tanjung, M.; Tjahjandarie, T. S.; Sentosa, M. H. Asian Pac. J. Trop. Dis. 2013, 3, 401-404.
- (13) Syah, Y. M.; Hakim, E. H.; Achmad, S. A.; Hanafi, M.; Ghisalberti, E. L. *Nat. Prod. Commun.* **2009**, *4*, 63-67.
- (14) Tanjung, M.; Aldin, M. F.; Tjahjandarie, T. S.; Rahayu, D. O.; Gunawan, A. N. I.; Saputri, R. D. *Nat. Prod. Sci.* **2021**, *27*, 172-175.
- (15) Aldin, M. F.; Tjahjandarie, T. S.; Saputri, R. D.; Tanjung, M. Nat. Prod. Sci. 2021, 27, 45-48.
- (16) Saputri, R. D.; Tanjung, M.; Tjahjandarie, T. S. Nat. Prod. Sci. 2021, 27, 183-186.

Received February 24, 2022

Revised March 24, 2022

Accepted March 25, 2022