DOI QR코드

DOI QR Code

임베디드 보드를 사용한 EKF 기반 실시간 배터리 SOC 추정

Real-time EKF-based SOC estimation using an embedded board for Li-ion batteries

  • Lee, Hyuna (Dept. of Electronic Engineering, koreaTech) ;
  • Hong, Seonri (Dept. of Energy ICT Convergence Research, Korea Institute of Energy Research) ;
  • Kang, Moses (Dept. of Energy ICT Convergence Research, Korea Institute of Energy Research) ;
  • Sin, Danbi (Dept. of Computer Engineering, koreaTech) ;
  • Beak, Jongbok (Dept. of Energy ICT Convergence Research, Korea Institute of Energy Research)
  • 투고 : 2021.12.28
  • 심사 : 2022.03.16
  • 발행 : 2022.03.31

초록

정확한 SOC 추정은 배터리 운영 전략을 제시하는 중요한 지표로 많은 연구가 진행되었다. 기존 연구에서 검증을 위해 주로 사용되던 시뮬레이션 방식은 실제 BMS 환경처럼 실시간 SOC를 추정하기 어렵다. 따라서 본 논문에서는 실시간 배터리 SOC 추정이 가능한 임베디드 시스템을 구현하고 검증 과정에서 발생 가능한 문제 분석을 목표로 한다. 2개의 라즈베리파이 보드로 구성된 환경은 Simscape 배터리에서 측정된 데이터로 EKF 기반 SOC 추정을 진행한다. 검증 단계에서는 온도에 따라 달라지는 배터리 특성을 고려하여, 다양한 주변 온도에서 결과를 확인하였다. 또 임베디드 환경에서 발생하는 오프셋 오류와 패킷 손실에 대비하여, 문제 상황에서 SOC 추정 성능을 검증하였다. 이를 통해 안정범위의 5%내의 오차를 갖는 실시간 SOC 추정이 가능한 임베디드 시스템 구현을 위한 전략을 제시한다.

Accurate SOC estimation is an important indicator of battery operation strategies, and many studies have been conducted. The simulation method which was mainly used in previous studies, is difficult to conduct real-time SOC estimation like real BMS environment. Therefore, this paper aims to implement a real-time battery SOC estimation embedded system and analyze problems that can arise during the verification process. In environment consisting of two Raspberry Pi boards, SOC estimation with the EKF uses data measured by the Simscape battery model. Considering that the operating characteristics of the battery vary depend on the temperature, the results were analyzed at various ambient temperatures. It was confirmed that accurate SOC estimation was performed even when offset fault and packet loss occurred due to communication or sensing problems. This paper proposes a guide for embedded system strategies that enable real-time SOC estimation with errors within 5%.

키워드

과제정보

This work was conducted under framework of the Ministry of Trade and Industry&Energy (MOTIE) and Korea Institute of Energy Technology Evaluation and Planning (KETEP) of the Republic of Korea. (No. 20182410105280)

참고문헌

  1. J. Hwang, "Technology and Market Trend of Secondary Battery," Journal of the Korean Society of Automotive Engineers, vol.43, no.10, pp.31-35, 2021.
  2. H. A. Hannan, M. S. H. Liqu, A. Hussain, A. Mohamed, "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, vol.78, no.C, pp.834-854, 2017. DOI: 10.1016/j.rser.2017.05.001
  3. S. Kim, J. Lee, D. Wang, I. Lee, "Vehicle Simulator and SOC Estimation of Battery using Artificial Neural Networks," The Journal of Korean Institute of Information Technology, vol.19, no.5, pp.51-62, 2021. DOI: 10.14801/jkiit.2021.19.5.51
  4. F. Yang, W. Li, C. Li, Q. Miao, "State-of-charge estimation of lithium-ion batteries based on gated recurrent neural network," Energy, vol. 175, pp. 66-75, May. 2019. https://doi.org/10.1016/j.energy.2019.03.059
  5. B. Yoon, S. Yoo, S. Seong, "Compensation Method of EKF Based on LSTM for Estimating State of Charge of Li-polymer Battery," Transaction of the Korean Society of Automotive Engineers, vol.27, no.7, pp.501-507, 2019. DOI: 10.3390/en14020349
  6. M. D. Mudaliar, N. Sivakumar, "IoT based real time energy monitoring system using Raspberry Pi," Internet of Things, vol.12, 2020. DOI: 10.1016/j.iot.2020.100292
  7. S. Jo, S. Jung, H. Kim, "Development of Battery Monitoring System Using the Extended Kalman Filter," Journal of the Korea Convergence Society, vol.11, no.6, pp.7-14, 2020. DOI: 10.15207/JKCS.2020.11.6.007
  8. H. Lee, "Research for Trustworthiness Evaluation and Recovery of Battery Management Data using Artificial Intelligent Methods against Cyber Attack," Doctoral thesis, Soongsil University, 2021.
  9. P. Shrivastava, T. K. Soon, M. Y. I. B. Idris, S. Mekhilef, "Overview of model-based online state-of-charge estimation using Kalman filter family for lithium-ion batteries," Renewable and Sustainable Energy Reviews, Vol.113, 2019. DOI: 10.1016/j.rser.2019.06.040
  10. D. Jeong, H. Song, J. Yun, "A Study on the comparison of Battery SOC estimation performance of Column Counting and Extended Kalman Filter Considering Sensor Errors," Journal of the Korean Institute of Illuminating and Electrical Installation Engineers, vol.34, no.5, pp.43-50, 2020. DOI: 10.5207/JIEIE.2020.34.5.043
  11. H. He, R. Xiong, J. Fan, "Evaluation of Lithium-Ion Battery Equivalent Circuit Models for State of Charge Estimation by an experimental Approach," Energies, vol.4, no.4, pp.582-598, 2011. DOI: 10.3390/en4040582
  12. K. Ryu, B. Kim, D. Kim, M. Jang, H. Ko, H. Kim, "A State-of-Charge estimation using extended Kalman filter for battery of electric vehicle," Journal of the Korea Academia-Industrial cooperation Society, vol.18, no.10, pp.15-23, 2017. DOI: https://doi.org/10.5762/KAIS.2017.18.10.15
  13. C. Yoon, P. Lee, J. Kim, "Electrochemical Analysis and SOC Estimation Techniques by Using Extended Kalman Filter of the Non-aqueous Li-air Battery," The Transactions of the Korean Institute of Power Electronics, vol.23, no.2, pp.106-111, 2018. DOI: 10.6113/TKPE.2018.23.2.106
  14. J. Park, J. Kim, S. Jang, J. Kim, "Improvement of SOC Estimation based on Noise Parameter Differential Design of Extended Kalman Filter according to Non-linearity of LiFePO4 Battery," Proc. of the Power Electronics Conference, pp. 121-122, 2018.