DOI QR코드

DOI QR Code

The effect of deep level defects in SiC on the electrical characteristics of Schottky barrier diode structures

깊은 준위 결함에 의한 SiC SBD 전기적 특성에 대한 영향 분석

  • Lee, Geon-Hee (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Byun, Dong-Wook (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Shin, Myeong-Cheol (Dept. of Electronic materials Engineering, Kwangwoon University) ;
  • Koo, Sang-Mo (Dept. of Electronic materials Engineering, Kwangwoon University)
  • Received : 2021.12.03
  • Accepted : 2022.03.17
  • Published : 2022.03.31

Abstract

SiC is a power semiconductor with a wide bandgap, high insulation failure strength, and thermal conductivity, but many deep-level defects. Defects that appear in SiC can be divided into two categories, defects that appear in physical properties and interface traps that appear at interfaces. In this paper, Z1/2 trap concentration 0 ~ 9×1014 cm-3 reported at room temperature (300 K) is applied to SiC substrates and epi layer to investigate turn-on characteristics. As the trap concentration increased, the current density, Shockley-read-Hall (SRH), and Auger recombination decreased, and Ron increased by about 550% from 0.004 to 0.022 mohm.

SiC는 차세대 전력반도체의 핵심 재료로 넓은 밴드갭과 높은 절연파괴강도, 열전도율을 가지고 있지만 deep level defect와 같은 다양한 문제를 야기하는 결함이 존재한다. SiC에서 나타나는 defect는 물성에서 나타나는 defect와 계면에서 나타나는 interface trap 2가지로 나뉜다. 본 논문은 상온 (300 K)에서 보고되는 Z1/2 trap concentration 0 ~ 9×1014 cm-3을 SiC substrate와 epi layer에 적용하여 turn-on 특성을 알아보고자 한다. 전류밀도와 SRH(Shockley-Read-Hall), Auger recombination을 통해 구조 내 재 결합률을 확인하였다. trap concentration이 증가할수록 turn-on시 전류밀도와 재 결합률은 감소하며 Ron은 0.004에서 0.022 mΩ으로 약 550% 증가하였다.

Keywords

References

  1. Bhatnagar. M, Baliga. B. J, "Comparison of 6H-SiC, 3C-SiC, and Si for power devices," IEEE Transactions on electron devices, vol.40, no.3, pp.645-655. 1993. DOI: 10.1109/16.199372
  2. Matsunami. H, "Current SiC technology for power electronic devices beyond Si," Microelectronic engineering, vol.83, no.1, pp.2-4, 2006. DOI: 10.1016/j.mee.2005.10.012
  3. Evans. T, et al, "Development of SiC power devices and modules for automotive motor drive use," 2013 IEEE International Meetingf for Future of Electron Devices, pp.116-117, 2013. DOI: 10.1109/IMFEDK.2013.6602266
  4. She. Xu, et al, "Review of Silicon Carbide Power Devices and Their Applications," IEEE Transactions on Industrial Electronics, vol.64, no.10, pp.8193-8205, 2017. DOI: 10.1109/TIE.2017.2652401
  5. Magnusson. B, "Optical characterization of deep level defects in SiC". Materials Science Forum, vol.483, pp.341-346, 2005. DOI: 10.4028/www.scientific.net/MSF.483-485.341
  6. Castaldini. A, "Deep levels by proton and electron irradiation in 4H-SiC," journal of Applied Physics, vol.98, no.5, 053706, 2005. DOI: 10.1063/1.2014941
  7. Hemmingsson. C, "Deep level defects in electron-irradiated 4H SiC epitaxial layers," Journal of Applied Physics, vol.81, no.9, pp. 6155-6159, 1997. DOI: 10.1063/1.364397
  8. Pintilie. L, "Formation of the Z1,2 deep-lavel defects in 4H-SiC epitaxial layers: Evidence for nitrogen participation," Applied physics letters, vol.81, no.25, pp.4841-4843, 2002. DOI: 10.1063/1.1529314
  9. Kawahara. K, "Investigation on origin of Z1/2 center in SiC by deep level transient spectroscopy and electron paramagnetic resonance," Appplied Physics Letters, vol.102, no.11, pp.102106, 2013. DOI: 10.1063/1.4796141
  10. Dalibor. T, "Deep Defect Centers in Silicon Carbide Monitored with Deep Level Transient Spectroscopy", Physica status solidi (a), vol. 162, no.1, pp.199-225, 1997. DOI: 10.1002/1521-396X (199707)162:1<199::AID-PSSA199>3.0.CO;2-0
  11. Danno. K, "Deep level transient spectroscopy on as-grown and electron-irradiated p-type 4H-SiC epilayers", Journal of applied physics, vol.101, no.10, pp.103704, 2007. DOI: 10.1063/1.2730569
  12. Pezzimenti. F, "Study and Assessment of Defect and Trap Effects on the Current Capabilities of a 4H-SiC-based Power MOSFET," Electronics, vol.10, no.6, pp.735, 2021. DOI: 10.3390/electronics10060735
  13. Sentaurus Device User, Version. L, Synopsys TCAD Sentaurus, San Jose, 2016.
  14. Lophitis. N, TCAD device modelling and simulation of wide bandgap power semiconductors, IntechOpen, 2018.
  15. Klein. P. B, et al, "Recombination processes controlling the carrier lifetime in n-4H-SiC epilayers with low Z1/2 concentrations," Journal of Applied Physics, vol. 108, no.3, pp.033713, 2010. DOI: 10.1063/1.3466745