Acknowledgement
이 논문은 2021년도 정부(산업통상자원부)의 재원으로 한국에너지기술평가원의 지원(20203030020080, 해상풍력 단지 해양공간 환경 영향 분석 및 데이터베이스 구축)과 2022년도 정부(해양수산부)의 재원으로 해양수산과학기술진흥원의 지원(1525011760, 북극해 온난화-해양생태계 변화 감시 및 미래전망 연구)을 받아 수행된 연구임.
References
- S. Lee, M. Kim, and Y. Jeong, "A study on the waveform-based end-to-end deep convolutional neural network for weakly supervised sound event detection" (in Korean), J. Acoust. Soc. Kr. 39, 24-31 (2020).
- H. Yang, K. Lee, Y. Choo, and K. Kim, "Underwater Acoustic Research Trends with Machine Learning General Background," J. Ocean Eng. Technol. 34, 147-154 (2020). https://doi.org/10.26748/ksoe.2020.015
- Y. Wang and H. Peng, "Underwater acoustic source localization using generalized regression neural network," J. Acoust. Soc. Am. 143, 2321-2331 (2018). https://doi.org/10.1121/1.5032311
- C. Frederick, S. Villar, and Z. H. Michalopoulou, "Seabed classification using physics-based modeling and machine learning," J. Acoust. Soc. Am. 148, 859-872 (2020). https://doi.org/10.1121/10.0001728
- S. Kim, S.-K. Jung, D. Kang, M. Kim, and S. Cho, "Application of the artificial intelligence for automatic detection of shipping noise in shallow-water" (in Korean), J. Acoust. Soc. Kr. 39, 279-285 (2020).
- S. Liu, M. Liu, M. Wang, T. Ma, and X. Qing, "Classification of cetacean whistles based on convolutional neural network," Proc. IEEE 10th ICWCSP. 1-5 (2018).
- W. Luo, W. Yang, and Y. Zhang, "Convolutional neural network for detecting odontocete echolocation clicks," J. Acoust. Soc. Am. 145, EL7-12 (2019). https://doi.org/10.1121/1.5085647
- D. Wang, L. Zhang, Z. Lu, and K. Xu, "Large-scale whale call classification using deep convolutional neural network architectures," Proc. IEEE ICSPCC. 1-5 (2018).
- Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel, "Backpropagation applied to handwritten zip code recognition," Neural Computation, 1, 541-551 (1989). https://doi.org/10.1162/neco.1989.1.4.541
- S. Behnke, Hierarchical Neural Networks for Image Interpretation (Springer, New York, 2003), pp. 44-46.
- A. Maccagno, A. Mastropietro, U. Mazziotta, M. Scarpiniti, Y.-C. Lee, and A. Uncini, "A CNN approach for audio classification in construction sites," in Handbook of Progresses in Artificial Intelligence and Neural Systems, edited by A. Esposito, M. Faundez-Zanuy, F. C. Morabito, and E. Pasero (Springer, Singapore, 2021).
- T. Lu, B. Han, and F. Yu, "Detection and classification of marine mammal sounds using AlexNet with transfer learning," Ecological Informatics, 62, 101277 (2021). https://doi.org/10.1016/j.ecoinf.2021.101277
- Y. Chen, W. Wang, Y. Liang, D. Zhou, C. Dong, and J. Li, "Real-time detection and classification for targeted marine mammals," Proc. 2021 OES China Ocean Acoustics, 1027-1031 (2021).
- S. M. Van Parijs, C. W. Clark, R. S. Sousa-Lima, S. E. Parks, S. Rankin, D. Risch, and I. C. Van Opzeeland, "Management and research applications of real-time and archival passive acoustic sensors over varying temporal and spatial scales," Marine Ecology Progress Series, 395, 21-36 (2009). https://doi.org/10.3354/meps08123
- M. Thomas, B. Martin, K. Kowarski, B. Gaudet, and S. Matwin, "An end-to-end approach for true detection of low frequency marine mammal vocalizations," J. Acoust. Soc. Am. 146, 2959 (2019).
- M. Thomas, B. Martin, K. Kowarski, B. Gaudet, and S. Matwin, "Marine mammal species classification using convolutional neural networks and a novel acoustic representation," Proc. European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases, 290-305 (2019).
- C. Li, R.V. Sanchez, G. Zutita, M. Cerrada, D. Cabrera, and R. E. Vasquez, "Multimodal deep support vector classification with homologous features and its application to gearbox fault diagnosis," Neurocomputing, 168, 119-127 (2015). https://doi.org/10.1016/j.neucom.2015.06.008
- A. Krizhevsky, I. Sutskever, and G. E.Hinton, "Imagenet classification with deep convolutional neural networks," Proc. Advances in neural information processing systems, 25, 1097-1105 (2012).
- Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, 86, 2278-2324 (1998). https://doi.org/10.1109/5.726791
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv preprint arXiv:1207.0580 (2012).
- K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," Proc. IEEE CVPR. 770-778 (2016).
- A. Krizhevsky, I. Sutskever, and G. Hinton, "ImageNet classification with deep convolutional neural networks," Proc. Advances in Neural Information Processing Systems, 1097-1105 (2012).
- D.-G. Han, J. Joo, W. Son, K. H. Cho, J. W. Choi, E. J. Yang, J.-H. Kim, S.-H. Kang, and H. S. La, "Effects of geophony and anthrophony on the underwater acoustic environment in the East Siberian Sea, arctic ocean," Geophysical Research Letters, 48, e2021GL093097 (2021).
- D. Risch, C. W. Clark, P. J. Corkeron, K. M. Elepfandt, K. M. Kovacs, C. Lydersen, I. Stirling, and S. M. van Parijs, "Vocalizations of male bearded seals, Erignathus barbatus: Classification and geographical variation," Animal Behavior, 73, 747-762 (2007). https://doi.org/10.1016/j.anbehav.2006.06.012
- I. Charrier, N. Mathevon, and T. Aubin, "Bearded seal males perceive geographic variation in their trills," Behav. Ecol. Sociobiol. 67, 1679-1689 (2013). https://doi.org/10.1007/s00265-013-1578-6
- G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. R. Salakhutdinov, "Improving neural networks by preventing co-adaptation of feature detectors," arXiv Tech. Rep., 2012.
- J. Sietsma and R. Dow "Creating artificial neural networks that generalize," Neural Networks, 4, 67-79 (1991). https://doi.org/10.1016/0893-6080(91)90033-2
- M. Jimbo, D. Mizuguchi, H. Shirakawa, K. Tsujii, A. Fujiwara, K. Miyashita, and Y. Mitani, "Seasonal variations in the call presence of bearded seals in relation to sea ice in the southern Chukchi Sea," Polar. Biol. 42, 1953-1958 (2019). https://doi.org/10.1007/s00300-019-02569-2