
Bull. Korean Math. Soc. 59 (2022), No. 2, pp. 285–301

https://doi.org/10.4134/BKMS.b200916

pISSN: 1015-8634 / eISSN: 2234-3016

RANDOM SAMPLING AND RECONSTRUCTION OF

SIGNALS WITH FINITE RATE OF INNOVATION

Yingchun Jiang and Junjian Zhao

Abstract. In this paper, we mainly study the random sampling and re-

construction of signals living in the subspace V p(Φ,Λ) of Lp(Rd), which
is generated by a family of molecules Φ located on a relatively separated

subset Λ ⊂ Rd. The space V p(Φ,Λ) is used to model signals with finite

rate of innovation, such as stream of pulses in GPS applications, cellular
radio and ultra wide-band communication. The sampling set is indepen-

dently and randomly drawn from a general probability distribution over
Rd. Under some proper conditions for the generators Φ = {φλ : λ ∈ Λ}
and the probability density function ρ, we first approximate V p(Φ,Λ) by

a finite dimensional subspace V pN (Φ,Λ) on any bounded domains. Then,
we prove that the random sampling stability holds with high probability

for all signals in V p(Φ,Λ) whose energy concentrate on a cube when the

sampling size is large enough. Finally, a reconstruction algorithm based
on random samples is given for signals in V pN (Φ,Λ).

1. Introduction

Random sampling plays an important role in many fields, such as image
processing [5], compressed sensing [7] and learning theory [13]. Random sam-
pling has been generally studied for multivariate trigonometric polynomials [1],
bandlimited signals [2,3], signals that satisfy some locality properties in short-
time Fourier transform [16], signals with bounded derivatives [19] and signals
in a shift-invariant space [8, 9, 18, 20]. Moreover, random samples were almost
all taken from a uniform distribution on a bounded domain [−K,K]d, although
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the probability density function in [9] is assumed to have support in [−K,K]d

and has nonzero lower bound.
Recently, random sampling in signal spaces with finite rate of innovation was

firstly studied in [10], where the used techniques depend on the properties in
the Hilbert space L2(Rd). In this paper, we mainly study the random sampling
and reconstruction of signals with finite rate of innovation in a Banach space
Lp(Rd). Moreover, the random samples are drawn over Rd from a general
probability distribution, which may have more and more important applications
in real world [5].

The space with finite rate of innovation (FRI) is used to model signals with
finite degree of freedom in unit time, which was firstly introduced in [17] and
were further studied in [14,15] from the mathematical viewpoint.

Let Λ be a relatively separated subset of Rd, which means that

(1) D(Λ) := sup
x∈Rd

∑
λ∈Λ

χλ+[0,1]d(x) <∞,

where χ denotes the characteristic function. The space Lp(Rd) consists of all
functions f : Rd → R satisfying

(2) ‖f‖Lp(Rd) =
(∫

Rd
|f(x)|pdx

)1/p

<∞

for 1 ≤ p <∞ and ‖f‖L∞(Rd) = ess sup
x∈Rd

|f(x)| <∞.

Given a relatively separated set Λ, the subspaces of Lp(Rd) with finite rate
of innovation are defined as

(3) V p(Φ,Λ) =

{∑
λ∈Λ

c(λ)φλ :
∥∥(c(λ))λ∈Λ

∥∥
`p(Λ)

<∞
}
.

Here,
∥∥(c(λ))λ∈Λ

∥∥
`p(Λ)

=
( ∑
λ∈Λ

|c(λ)|p
)1/p

for 1 ≤ p <∞ and
∥∥(c(λ))λ∈Λ

∥∥
`∞(Λ)

= sup
λ∈Λ
|c(λ)|.

The FRI model spaces V p(Φ,Λ) can contain many signal spaces, such as
bandlimited spaces, finitely generated shift-invariant spaces, nonuniform spline
spaces for modeling electrocardiogram signals, twisted shift-invariant spaces in
Gabor system, and so on. Moreover, they have been widely applied to many
scientific fields, such as curve fitting and radar imaging [11,12].

In this paper, we always suppose that the generators Φ = {φλ : λ ∈ Λ}
satisfy the following two assumptions:

(A1) ‖Φ‖∞,q,u <∞ for some 1 ≤ q ≤ ∞ and weight function u(x) = uα(x) =
(1 + |x|)α with α > max

{
d(1− 1/q), d(1− 1/p)

}
. Here,

‖Φ‖p,q,u = sup
λ∈Λ

∥∥∥∥(∥∥φλ(·)u(· − λ)
∥∥
Lp(k+[0,1]d)

)
k∈Zd

∥∥∥∥
`q(Zd)
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+ sup
k∈Zd

∥∥∥∥(∥∥φλ(·)u(· − λ)
∥∥
Lp(k+[0,1]d)

)
λ∈Λ

∥∥∥∥
`q(Λ)

.(4)

(A2) Φ is a Riesz basis of V 2(Φ,Λ) which means that there exists a positive
constant C0 ≥ 1 such that

(5) C−1
0 ‖c‖`2(Λ) ≤

∥∥∥∑
λ∈Λ

c(λ)φλ

∥∥∥
L2(Rd)

≤ C0‖c‖`2(Λ)

holds for all c =
(
c(λ)

)
λ∈Λ

∈ `2(Λ) and {φλ : λ ∈ Λ} is a basis of

V 2(Φ,Λ).

Let 0 < δ < 1 and CK = [−K,K]d for K > 0. Define a compact subset of
V p(Φ,Λ) by

(6) V pK(Φ,Λ) =

{
f ∈ V p(Φ,Λ) :

∫
CK

|f(x)|pdx ≥ (1− δ)
∫
Rd
|f(x)|pdx

}
,

which contains all functions in V p(Φ,Λ) whose energy concentrates on the cube
CK .

This paper is organized as follows. In Section 2, we show that V p(Φ,Λ) can
be approximated by a finite dimensional subspace V pN (Φ,Λ) on any bounded
domains. A result about the covering number for the normalized V pN (Φ,Λ) is
shown in Section 3. In Section 4, we prove that the sampling inequality holds
with high probability for all functions in V pK(Φ,Λ). In Section 5, we estimate the
condition number for random matrix and provide a reconstruction algorithm
based on random samples for functions in V pN (Φ,Λ).

2. Approximation to V p(Φ,Λ)

In this section, we will show that V p(Φ,Λ) can be approximated by a finite
dimensional subspace on any bounded domains.

For a given positive integer N , define a finite dimensional subspace

(7) V pN (Φ,Λ) =

{ ∑
λ∈Λ∩[−N,N ]d

c(λ)φλ : c(λ) ∈ R
}

of V p(Φ,Λ) and its normalization

(8) V p,∗N (Φ,Λ) =

{
f ∈ V pN (Φ,Λ) : ‖f‖Lp(Rd) = 1

}
.

Lemma 2.1 ([15]). Let 1 ≤ q ≤ ∞ and α > d(1 − 1/q). Suppose that Λ is a
relatively separated subset of Rd and ‖Φ‖∞,q,u < ∞. If Φ is a Riesz basis of
V 2(Φ,Λ), then Φ is a p-Riesz basis of the space V p(Φ,Λ) for any 1 ≤ p ≤ ∞,
that is, there exist positive constants cp and Cp such that

(9) cp‖c‖`p(Λ) ≤
∥∥∥∑
λ∈Λ

c(λ)φλ

∥∥∥
Lp(Rd)

≤ Cp‖c‖`p(Λ)

holds for any (c(λ))λ∈Λ ∈ `p(Λ).
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In the following, we will show that V p(Φ,Λ) can be approximated by
V pN (Φ,Λ) on any bounded domains CR = [−R,R]d for R > 0.

Lemma 2.2. Let 1 ≤ p ≤ ∞ and p′ be the conjugate number of p. Suppose that
Φ satisfy the assumptions (A1) and (A2). If f ∈ V p(Φ,Λ) and ‖f‖Lp(Rd) = 1,

then for given ε1 > 0 and ε2 > 0, there exists an fN ∈ V pN (Φ,Λ) such that

(10) ‖f − fN‖Lp(CR) ≤ ε1

when

(11)
N ≥ R+

[
‖Φ‖∞,q,u(2R)d/p

cpε1

(d2dD(Λ)(1 +R)d−1

αp′ − d

)1/p′
] p′
αp′−d

=: N1(ε1, R)

and

(12) ‖f − fN‖L∞(CR) ≤ ε2

when

(13) N ≥ R+

[
‖Φ‖∞,q,u
cpε2

(d2dD(Λ)(1 +R)d−1

αp′ − d

)1/p′
] p′
αp′−d

=: N2(ε2, R).

Proof. It follows from the assumption ‖Φ‖∞,q,u <∞ that

(14) |φλ(x)| ≤ ‖Φ‖∞,q,u
(1 + |x− λ|)α

, ∀x ∈ Rd, λ ∈ Λ.

For f =
∑
λ∈Λ

c(λ)φλ ∈ V p(Φ,Λ), take N > R and choose

(15) fN =
∑

λ∈Λ∩[−N,N ]d

c(λ)φλ ∈ V pN (Φ,Λ).

Then by Lemma 2.1, one has

‖f − fN‖pLp(CR) =

∫
CR

∣∣∣ ∑
λ∈Λ∩{Rd\[−N,N ]d}

c(λ)φλ(x)
∣∣∣pdx

≤ 1

cpp

∫
CR

( ∑
λ∈Λ∩{Rd\[−N,N ]d}

|φλ(x)|p
′
) p
p′
dx

≤
‖Φ‖p∞,q,u

cpp

∫
CR

( ∑
λ∈Λ∩{Rd\[−N,N ]d}

1

(1 + |x− λ|)αp′
) p
p′
dx.(16)

For λ = (λ1, λ2, . . . , λd) ∈ Λ, let |λ| = max{|λ1|, |λ2|, . . . , |λd|}. Since Λ is a
relatively separated set of Rd, for any m ∈ N, one has

(17) ]{λ ∈ Λ : m < |λ| ≤ m+ 1} ≤ D(Λ)
(
(2m+ 2)d − (2m)d

)
.



RANDOM SAMPLING AND RECONSTRUCTION OF SIGNALS 289

Then we can obtain ∑
λ∈Λ∩{Rd\[−N,N ]d}

1

(1 + |x− λ|)αp′

=
∑

λ∈Λ,|λ|>N

1

(1 + |x− λ|)αp′

≤
∞∑

m=N

∑
λ∈Λ,m<|λ|≤m+1

1

(1 + |λ| −R)αp′

≤ D(Λ)

∞∑
m=N

(2m+ 2)d − (2m)d

(1 +m−R)αp′

≤ d2dD(Λ)

∞∑
m=N

(m+ 1)d−1

(1 +m−R)αp′

≤ d2dD(Λ)

∞∑
m=N

(1 +R)d−1

(1 +m−R)αp′−d+1

≤ d2dD(Λ)(1 +R)d−1

∫ ∞
N−R−1

1

(1 + y)αp′−d+1
dy

= d2dD(Λ)(1 +R)d−1 1

αp′ − d
(N −R)d−αp

′
.(18)

This together with (16) obtains

(19)

‖f − fN‖Lp(CR)

≤ ‖Φ‖∞,q,u(2R)d/p

cp

(d2dD(Λ)(1 +R)d−1

αp′ − d

)1/p′

(N −R)d/p
′−α.

Finally, we obtain (10) from (19). The desired result (12) follows from

‖f − fN‖L∞(CR) ≤
‖Φ‖∞,q,u

cp

(d2dD(Λ)(1 +R)d−1

αp′ − d

)1/p′

(N −R)d/p
′−α.

�

3. Covering number for V p,∗
N (Φ,Λ)

In this section, we discuss the covering number of V p,∗N (Φ,Λ) with respect to
the norm ‖ · ‖L∞(Rd). Let S be a metric space and η > 0, the covering number
N (S, η) is defined to be the minimal integer m ∈ N such that there exist m
disks with radius η covering S.

Lemma 3.1 ([6]). Suppose that E is a finite dimensional Banach space with
dimE = s. Let Bε := {x ∈ E : ‖x‖ ≤ ε} be the closed ball of radius ε centered
at the origin. Then

N (Bε, η) ≤
(2ε

η
+ 1
)s
.
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Note that

(20) dim
(
V pN (Φ,Λ)

)
≤ ]
{
λ ∈ Λ : λ ∈ [−N,N ]d

}
≤ (2N)dD(Λ).

Then by Lemma 3.1, we have the following result.

Lemma 3.2. Let V p,∗N (Φ,Λ) be defined by (8). Then for any η > 0, the
covering number of V p,∗N (Φ,Λ) concerning the norm ‖ · ‖Lp(Rd) is bounded by

N
(
V p,∗N (Φ,Λ), η

)
≤ exp

(
(2N)dD(Λ) ln

(2

η
+ 1
))

.

Lemma 3.3. Suppose that Φ satisfy the assumptions (A1) and (A2). Then for
every f ∈ V p(Φ,Λ), we have

(21) ‖f‖L∞(Rd) ≤ C∗‖f‖Lp(Rd),

where

(22) C∗ =
‖Φ‖∞,q,u

cp

(
D(Λ) +D(Λ)

∞∑
m=1

(2m+ 2)d − (2m)d

mαp′

)1/p′

.

Proof. Suppose that f =
∑
λ∈Λ

c(λ)φλ ∈ V p(Φ,Λ). Then it follows from (14)

and Lemma 2.1 that

‖f‖L∞(Rd) ≤ sup
x∈Rd

∑
λ∈Λ

|c(λ)φλ|

≤ ‖Φ‖∞,q,u‖c‖`p sup
x∈Rd

(∑
λ∈Λ

1

(1 + |x− λ|)αp′
)1/p′

≤ ‖Φ‖∞,q,u
cp

‖f‖Lp(Rd) sup
x∈Rd

(∑
λ∈Λ

1

(1 + |x− λ|)αp′
)1/p′

.(23)

Note that sup
k∈Zd

]
(
Λ ∩ (k + [0, 1]d)

)
≤ D(Λ). Then

sup
x∈Rd

(∑
λ∈Λ

1

(1 + |x− λ|)αp′
)1/p′

≤ sup
k∈Zd

sup
x∈k+[0,1]d

( ∑
λ∈Λ∩(k+[0,1]d)

1

(1 + |x− λ|)αp′

+
∑

λ∈Λ∩{Rd\(k+[0,1]d)}

1

(1 + |x− λ|)αp′
)1/p′

≤ sup
k∈Zd

(
D(Λ) +

∑
λ∈Λ,|λ−k|>1

1

|λ− k|αp′
)1/p′



RANDOM SAMPLING AND RECONSTRUCTION OF SIGNALS 291

≤ sup
k∈Zd

(
D(Λ) +

∞∑
m=1

∑
λ∈Λ,m<|λ−k|≤m+1

1

mαp′

)1/p′

≤
(
D(Λ) +D(Λ)

∞∑
m=1

(2m+ 2)d − (2m)d

mαp′

)1/p′

.(24)

Since α > d(1 − 1/p), we have
∑∞
m=1

(2m+2)d−(2m)d

mαp′
< ∞. Finally, it follows

from (23) and (24) that (21) holds. �

Lemma 3.4. Suppose that Φ satisfy the assumptions (A1) and (A2). Then
the covering number of V p,∗N (Φ,Λ) with respect to ‖ · ‖L∞(Rd) is bounded by

N
(
V p,∗N (Φ,Λ), η

)
≤ exp

(
(2N)dD(Λ) ln

(2C∗

η
+ 1
))

.

Proof. By Lemma 3.2, the covering number of V p,∗N (Φ,Λ) with respect to
‖ · ‖Lp(Rd) satisfies

(25) N
(
V p,∗N (Φ),

η

C∗

)
≤ exp

(
(2N)dD(Λ) ln

(2C∗

η
+ 1
))

.

Let F be the corresponding η
C∗ -net for V p,∗N (Φ,Λ). It means that for every

f ∈ V p,∗N (Φ,Λ), there exists an f̃ ∈ F such that ‖f − f̃‖Lp(Rd) ≤ η
C∗ . By

Lemma 3.3, we have

‖f − f̃‖L∞(Rd) ≤ C∗‖f − f̃‖Lp(Rd) ≤ η.
Therefore, F is also an η-net of V p,∗N (Φ,Λ) with respect to the norm ‖·‖L∞(Rd).
Since

](F) ≤ exp

(
(2N)dD(Λ) ln

(2C∗

η
+ 1
))

,

the desired result is proved. �

4. Random sampling inequality of V p
K(Φ,Λ)

Let X = {xj : j ∈ N} be a sequence of independent random variables that
are drawn from a general probability distribution over Rd with density function
ρ satisfying

(26) 0 < cρ = ess inf
x∈CK

ρ(x) and Cρ = ess sup
x∈Rd

ρ(x) <∞.

Then for any f ∈ V p(Φ,Λ), we introduce the random variables

(27) Xj(f) = |f(xj)|p −
∫
Rd
ρ(x)|f(x)|pdx.

It is easy to see that Xj(f) is a sequence of independent random variables with
expectation E[Xj(f)] = 0. Next, we will give some estimates for Xj(f).

Lemma 4.1. Let ρ(x) be a probability density function over Rd satisfying (26).
Then for any f, g ∈ V p(Φ,Λ), the following inequalities hold:
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(1) ‖Xj(f)‖`∞ ≤ ‖f‖pL∞(Rd)
.

(2) ‖Xj(f)−Xj(g)‖`∞ ≤ 2p
(

max
{
‖f‖L∞(Rd), ‖g‖L∞(Rd)

})p−1

‖f − g‖L∞(Rd).

(3) V ar(Xj(f)) ≤ Cρ‖f‖pL∞(Rd)
‖f‖p

Lp(Rd)
.

(4) V ar
(
Xj(f)−Xj(g)

)
≤ pCρ

(
max

{
‖f‖L∞(Rd), ‖g‖L∞(Rd)

})p−1

‖f − g‖L∞(Rd)

(
‖f‖p

Lp(Rd)
+ ‖g‖p

Lp(Rd)

)
.

Proof. (1) Direct computation obtains

‖Xj(f)‖`∞ ≤ sup
x∈Rd

max

{
|f(x)|p,

∫
Rd
ρ(x)|f(x)|pdx

}
≤ ‖f‖p

L∞(Rd)
.

(2) By mean value theorem, one has

‖Xj(f)−Xj(g)‖`∞

≤ sup
x∈Rd

(∣∣∣|f(x)|p − |g(x)|p
∣∣∣+

∫
Rd
ρ(x)

∣∣∣|f(x)|p − |g(x)|p
∣∣∣dx)

≤ 2 sup
x∈Rd

∣∣∣|f(x)|p − |g(x)|p
∣∣∣

= 2p
(

max
{
‖f‖L∞(Rd), ‖g‖L∞(Rd)

})p−1

‖f − g‖L∞(Rd).

(3) Since E[Xj(f)] = 0, we have

V ar(Xj(f)) = E[(Xj(f))2]

= E
[
|f(xj)|2p

]
−
(∫

Rd
ρ(x)|f(x)|pdx

)2

≤
∫
Rd
ρ(x)|f(x)|2pdx

≤ Cρ‖f‖pL∞(Rd)
‖f‖p

Lp(Rd)
.

(4) Using the similar method as (3), we have

V ar
(
Xj(f)−Xj(g)

)
= E

[(
Xj(f)−Xj(g)

)2]
≤ Cρ

∫
Rd

(
|f(x)|p − |g(x)|p

)2

dx

≤ Cρ

∫
Rd

∣∣∣|f(x)|p − |g(x)|p
∣∣∣(|f(x)|p + |g(x)|p

)
dx

≤ Cρ sup
x∈Rd

∣∣∣|f(x)|p − |g(x)|p
∣∣∣(‖f‖pLp(Rd)

+ ‖g‖p
Lp(Rd)

)
≤ pCρ

(
max

{
‖f‖L∞(Rd), ‖g‖L∞(Rd)

})p−1

‖f − g‖L∞(Rd)
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×
(
‖f‖p

Lp(Rd)
+ ‖g‖p

Lp(Rd)

)
. �

In the following lemma, we will show that a uniform large deviation inequal-
ity holds for functions in V p,∗N (Φ,Λ) by Bernstein’s inequality.

Lemma 4.2 (Bernstein’s inequality [4]). Let X1, X2, . . . , Xn be independent
random variables with expected values E(Xj) = 0 for j = 1, 2, . . . , n. Assume
that V ar(Xj) ≤ σ2 and |Xj | ≤M almost surely for all j. Then for any λ ≥ 0,

Prob

(∣∣∣∣ n∑
j=1

Xj

∣∣∣∣ ≥ λ) ≤ 2 exp

(
− λ2

2nσ2 + 2
3Mλ

)
.

Lemma 4.3. Let {xj : j ∈ N} be a sequence of independent random variables
that are drawn from a general probability distribution over Rd with density
function ρ satisfying (26). If f ∈ V p,∗N (Φ,Λ), then for n ∈ N and λ ≥ 0,

Prob

(
sup

f∈V p,∗N (Φ,Λ)

∣∣∣∣ n∑
j=1

Xj(f)

∣∣∣∣ ≥ λ) ≤ A exp

(
−B λ2

12nCρ + 2λ

)
,

where A is of order exp(CNd) with B = min{
√

2
2592p(C∗)p−1 ,

3
2(C∗)p } and C de-

pending on Λ and Φ.

Proof. For given ` ∈ N, we construct a 2−`-covering for V p,∗N (Φ,Λ) with respect
to the norm ‖ · ‖L∞(Rd). Let C` be the corresponding 2−`-net for ` = 1, 2, . . ..

Then, C` has cardinality at most N
(
V p,∗N (Φ,Λ), 2−`

)
.

For given f ∈ V p,∗N (Φ,Λ), let f` be the function in C` that is closest to f
with respect to the norm ‖ · ‖L∞(Rd). Then, ‖f − f`‖L∞(Rd) ≤ 2−` → 0 when
`→∞. Moreover, by Lemma 3.3 and the item (2) of Lemma 4.1, we have

Xj(f) = Xj(f1) + (Xj(f2)−Xj(f1)) + (Xj(f3)−Xj(f2)) + · · · .

If sup
f∈V p,∗N (Φ,Λ)

∣∣∣ n∑
j=1

Xj(f)
∣∣∣ ≥ λ, the event ω` must hold for some ` ≥ 1, where

ω1 =

{
there exists f1 ∈ C1 such that

∣∣∣∣ n∑
j=1

Xj(f1)

∣∣∣∣ ≥ λ

2

}
and for ` ≥ 2,

ω` =

{
there exist f` ∈ C` and f`−1 ∈ C`−1 with ‖f` − f`−1‖L∞(Rd) ≤ 3 · 2−`,

such that

∣∣∣∣∣∣
n∑
j=1

(
Xj(f`)−Xj(f`−1)

)∣∣∣∣∣∣ ≥ λ

2`2

}
.

If this is not the case, then with f0 = 0, we have∣∣∣∣ n∑
j=1

Xj(f)

∣∣∣∣ ≤ ∞∑
`=1

∣∣∣∣ n∑
j=1

(Xj(f`)−Xj(f`−1))

∣∣∣∣ ≤ ∞∑
`=1

λ

2`2
=
π2λ

12
≤ λ.



294 Y. JIANG AND J. ZHAO

Next, we estimate the probability of each ω`. By Lemmas 3.3, 4.1 and 4.2, for
every fixed f ∈ C1,

Prob

(∣∣∣∣ n∑
j=1

Xj(f)

∣∣∣∣ ≥ λ

2

)
≤ 2 exp

(
−

(λ2 )2

2nV ar(Xj(f)) + 2
3‖Xj(f)‖`∞ · λ2

)

≤ 2 exp

(
− λ2

8nCρ(C∗)p + 4
3λ(C∗)p

)
.

By Lemma 3.4, there are at most

N
(
V p,∗N (Φ,Λ),

1

2

)
≤ exp

(
(2N)dD(Λ) ln(4C∗ + 1)

)
functions in C1. Thus, the probability of ω1 is bounded by

Prob(ω1) ≤ 2 exp

(
(2N)dD(Λ) ln(4C∗ + 1)

)
exp

(
− λ2

8nCρ(C∗)p + 4
3λ(C∗)p

)
= 2 exp

(
2dNdD(Λ) ln(4C∗ + 1)

)
exp

(
− λ2

2
3 (C∗)p(12nCρ + 2λ)

)
.(28)

For ` ≥ 2, we estimate the probability of ω` in a similar way. For f ∈ C`,
g ∈ C`−1 and ‖f − g‖L∞(Rd) ≤ 3 · 2−`, we have

Prob

(∣∣∣∣ n∑
j=1

(Xj(f)−Xj(g))

∣∣∣∣ ≥ λ

2`2

)

≤ 2 exp

(
−

( λ
2`2 )2

2nV ar(Xj(f)−Xj(g)) + 2
3‖Xj(f)−Xj(g)‖`∞ · λ

2`2

)
≤ 2 exp

(
− υ2`

`4

)
,

where υ = λ2

4p(C∗)p−1(12nCρ+2λ) . There are at most N
(
V p,∗N (Φ,Λ), 2−`

)
func-

tions in C` and N
(
V p,∗N (Φ,Λ), 2−`+1

)
functions in C`−1. Therefore, we have

Prob
( ∞⋃
`=2

ω`

)
≤
∞∑
`=2

N
(
V p,∗N (Φ,Λ), 2−`

)
N
(
V p,∗N (Φ,Λ), 2−`+1

)
2 exp

(
− υ2`

`4

)

≤ 2(2C∗ + 1)2(2N)dD(Λ)
∞∑
`=2

exp

(
(2 ln 2)(2N)dD(Λ)`− υ2`

`4

)

=: C1

∞∑
`=2

exp

(
C2`−

υ2`

`4

)

= C1

∞∑
`=2

exp

(
− υ2

`
2

(
2
`
2

`4
− C2`

2
`
2 υ

))
,

where C1 = 2(2C∗ + 1)2(2N)dD(Λ) and C2 = (2 ln 2)(2N)dD(Λ).
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Let C3 := min
`≥2

2
`
2

`4 = 1
324 and C4 := max

`≥2

8p(C∗)p−1` ln 2

2
`
2

= 6
√

2p(C∗)p−1 ln 2.

Then

2
`
2

`4
− C2`

2
`
2 υ

=
2
`
2

`4
− 8`p(C∗)p−1(2N)dD(Λ)(12nCρ + 2λ) ln 2

2
`
2λ2

≥ 1

324
− C4(2N)dD(Λ)(12nCρ + 2λ)

λ2
.

We first consider the case that

(29)
1

324
− C4(2N)dD(Λ)(12nCρ + 2λ)

λ2
>

1

648
.

Since p, a > 0, we has
∑∞
`=2 e

−pa` ≤ e−ap

pa ln a ([13]), then

Prob

( ∞⋃
`=2

ω`

)
≤
C1 exp

(
−
√

2υ

(
1

324 −
C4(2N)dD(Λ)(12nCρ+2λ)

λ2

))
√

2 ln
√

2 · υ
(

1
324 −

C4(2N)dD(Λ)(12nCρ+2λ)
λ2

)
=

2(2C∗ + 1)2(2N)dD(Λ)

√
2 ln
√

2 · υ
(

1
324 −

C4(2N)dD(Λ)(12nCρ+2λ)
λ2

)
× exp

(
−
√

2υ

(
1

324
− C4(2N)dD(Λ)(12nCρ + 2λ)

λ2

))
.

Under the condition (29), we have

√
2 ln
√

2 · υ
(

1

324
− C4(2N)dD(Λ)(12nCρ + 2λ)

λ2

)
≥
√

2 ln
√

2C4(2N)dD(Λ)

4p(C∗)p−1

≥ 3D(Λ) ln
√

2 ln 2.

This together with the probability of ω1 in (28) obtains

Prob

(
sup

f∈V p,∗N (Φ,Λ)

∣∣∣∣∣∣
n∑
j=1

Xj(f)

∣∣∣∣∣∣ ≥ λ
)
≤ Prob

( ∞⋃
`=1

ω`

)

≤ A exp

(
−B λ2

12nCρ + 2λ

)
.

Here, A is of order exp
(
CNd

)
with C = 2d+1D(Λ) ln(2C∗ + 1) and B =

min
{ √

2
2592p(C∗)p−1 ,

3
2(C∗)p

}
. Finally, we consider the case that

1

324
− C4(2N)dD(Λ)(12nCρ + 2λ)

λ2
≤ 1

648
.
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In this case, we can choose C ≥ 648C4B2dD(Λ) such that

A exp

(
−B λ2

12nCρ + 2λ

)
≥ 1.

This completes the proof. �

Lemma 4.4. Let X = {xj : j ∈ N} be a sequence of independent random
variables that are drawn from a general probability distribution over Rd with
density function ρ satisfying (26). Then for any γ > 0, the sampling inequality

(30) ncρ

(
‖f‖pLp(CK) − γ‖f‖

p
Lp(Rd)

)
≤

n∑
j=1

|f(xj)|p ≤ n
(
cργ + Cρ

)
‖f‖p

Lp(Rd)

holds for function f ∈ V pN (Φ,Λ) with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
,

where A and B are as in Lemma 4.3.

Proof. It is obvious that every f ∈ V pN (Φ,Λ) satisfies the inequality (30) if
and only if f/‖f‖Lp(Rd) does. So we assume that ‖f‖Lp(Rd) = 1, then f ∈
V p,∗N (Φ,Λ). The event

D =

{
sup

f∈V p,∗N (Φ,Λ)

∣∣∣∣ n∑
j=1

Xj(f)

∣∣∣∣ > γncρ

}
is the complement of

D̃ =

{
n

∫
Rd
ρ(x)|f(x)|pdx− γncρ ≤

n∑
j=1

|f(xj)|p

≤ γncρ + n

∫
Rd
ρ(x)|f(x)|pdx, ∀f ∈ V p,∗N (Φ,Λ)

}
⊆
{
ncρ

(
‖f‖pLp(CK) − γ‖f‖

p
Lp(Rd)

)
≤

n∑
j=1

|f(xj)|p

≤ n
(
cργ + Cρ

)
‖f‖p

Lp(Rd)
, ∀f ∈ V pN (Φ,Λ)

}
= D.

Using Lemma 4.3, the sampling inequality (30) holds for all f ∈ V pN (Φ,Λ) with
probability

Prob(D) ≥ Prob(D̃) = 1− Prob(D) ≥ 1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
.

�

In the following, we will show that if the sampling size is sufficiently large,
the sampling inequality holds with overwhelming probability for all functions
in V pK(Φ,Λ).
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Theorem 4.5. Let X = {xj : j ∈ N} be a sequence of independent random
variables that are drawn from a general probability distribution over Rd with
density function ρ satisfying (26). Then for any 0 < ε1, ε2, γ < 1 which satisfy

(31) L(ε1, ε2, γ) =: cρ

(
1− δ − p(1 + ε1)p−1ε1 − γ

(Cp
cp

)p)− p(C∗)p−1ε2 > 0,

the sampling inequality

(32) nL(ε1, ε2, γ)‖f‖p
Lp(Rd)

≤
n∑
j=1

|f(xj)|p ≤ nU(ε2, γ)‖f‖p
Lp(Rd)

holds uniformly for all functions f ∈ V pK(Φ,Λ) with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
.

Here, U(ε2, γ) = (cργ + Cρ)
(Cp
cp

)p
+ p(C∗)p−1ε2, A and B are the constants

in Lemma 4.3 corresponding to N = max{N1(ε1, R), N2(ε2, R)} with R > K
being a constant such that {xj : j = 1, 2, . . . , n} ⊂ CR.

Proof. It is obvious that every f ∈ V pK(Φ,Λ) satisfies the inequality (32) if and
only if f/‖f‖Lp(Rd) does. Hence, we assume that ‖f‖Lp(Rd) = 1.

For random variables {xj : j = 1, 2, . . . , n}, there exists an R > K such that
{xj : j = 1, 2, . . . , n} ⊂ CR. By Lemma 2.2, for any ε1, ε2 > 0 satisfying (31),
there exist N = max{N1(ε1, R), N2(ε2, R)} and fN ∈ V pN (Φ,Λ) such that

(33) ‖f − fN‖Lp(CK) ≤ ‖f − fN‖Lp(CR) ≤ ε1 and ‖f − fN‖L∞(CR) ≤ ε2.

This together with mean value theorem obtains

(34)
∣∣∣‖f‖pLp(CK) − ‖fN‖

p
Lp(CK)

∣∣∣ ≤ p(1 + ε1)p−1ε1

and ∣∣∣|f(xj)|p − |fN (xj)|p
∣∣∣ ≤ p(max{|f(xj)|, |fN (xj)|}

)p−1|f(xj)− fN (xj)|

≤ p(C∗)p−1ε2.(35)

It follows from (35) that

n∑
j=1

|fN (xj)|p − np(C∗)p−1ε2 ≤
n∑
j=1

|f(xj)|p

≤
n∑
j=1

|fN (xj)|p + np(C∗)p−1ε2.(36)

For the above fN ∈ V pN (Φ,Λ), we know from Lemma 4.4 that

(37) ncρ

(
‖fN‖pLp(CK)−γ‖fN‖

p
Lp(Rd)

)
≤

n∑
j=1

|fN (xj)|p ≤ n
(
cργ+Cρ

)
‖fN‖pLp(Rd)
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holds with probability at least

(38) 1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
.

Then, it follows from (34), (36) and (37) that

(39)

ncρ

(
‖f‖pLp(CK) − p(1 + ε1)p−1ε1 − γ‖fN‖pLp(Rd)

)
− np(C∗)p−1ε2

≤
n∑
j=1

|f(xj)|p

≤ n
(
cργ + Cρ

)
‖fN‖pLp(Rd)

+ np(C∗)p−1ε2

holds with the same probability as (38). Since f ∈ V pK(Φ,Λ), we have

(40) (1− δ)‖f‖p
Lp(Rd)

≤ ‖f‖pLp(CK).

Moreover, we know from Lemma 2.1 that

(41) ‖fN‖Lp(Rd) ≤ Cp‖c‖`p ≤
Cp
cp
‖f‖Lp(Rd).

Note that ‖f‖Lp(Rd) = 1. Then, the sampling inequality (32) follows from
(39)-(41). �

5. Reconstruction algorithm in V p
N(Φ,Λ)

In this section, we consider the reconstruction of functions in V pN (Φ,Λ) from
the corresponding random samples.

For a linear operator L defined on `p(Λ ∩ [−N,N ]d), the p-norm condition
number of L is defined by

(42) κ(L, p) := max
a∈`p(Λ∩[−N,N ]d),a 6=0

‖La‖`p
‖a‖`p

(
min

a∈`p(Λ∩[−N,N ]d),a 6=0

‖La‖`p
‖a‖`p

)−1

.

Now, we will estimate the condition number of random matrix

(43) U = (uj,λ)j=1,2,...,n;λ∈Λ∩[−N,N ]d ,

where uj,λ = φλ(xj). In fact, U is a matrix with n rows and the column number
is less than (2N)dD(Λ).

Theorem 5.1. Let random variables X = {xj : j ∈ N} and density function
ρ be as in Theorem 4.5. Suppose that there exists αp > 0 such that for all
c ∈ `p(Λ ∩ [−N,N ]d),

(44)

∥∥∥∥ ∑
λ∈Λ∩[−N,N ]d

c(λ)φλ

∥∥∥∥
Lp(CK)

≥ αp‖c‖`p .
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Then for any 0 < γ <
(
αp
Cp

)p
, the p-norm condition number

κ(U, p) ≤
(

cργ + Cρ
cρ(α

p
p − γCpp )

)1/p

Cp

holds with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
,

where A and B are as in Lemma 4.3.

Proof. For every c ∈ `p(Λ∩ [−N,N ]d) and g =
∑

λ∈Λ∩[−N,N ]d
c(λ)φλ. By Lemma

4.4, for random sequence {xj}nj=1, the sampling inequality

(45) ncρ

(
‖g‖pLp(CK) − γ‖g‖

p
Lp(Rd)

)
≤

n∑
j=1

|g(xj)|p ≤ n
(
cργ + Cρ

)
‖g‖p

Lp(Rd)

holds for all c ∈ `p(Λ ∩ [−N,N ]d) with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
.

We know from Lemma 2.1 that

(46) cp‖c‖`p ≤ ‖g‖Lp(Rd) ≤ Cp‖c‖`p .

Furthermore, it can be easily verified from (43) that

(47)

n∑
j=1

|g(xj)|p = ‖Uc‖p`p .

Then, combining (44)-(47) we obtain

ncρ(α
p
p − γCpp ) ≤

‖Uc‖p`p
‖c‖p`p

≤ n
(
cργ + Cρ

)
Cpp .

This together with (42) leads to the desired result. �

In the following theorem, we present a reconstruction algorithm for finite
dimensional subspace V pN (Φ,Λ).

Theorem 5.2. Suppose that random variables X = {xj : j ∈ N}, density
function ρ and the generators Φ are as in Theorem 5.1. Let U be as in (43),

Ψ(x) =
(
φλ(x)

)T
λ∈Λ∩[−N,N ]d

and (Sj(x))T1≤j≤n = U(UTU)−1Ψ. Then for any

0 < γ <
(
αp
Cp

)p
, the reconstruction formula

(48) f(x) =

n∑
j=1

f(xj)Sj(x)
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holds for all f ∈ V pN (Φ,Λ) with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
,

where A and B are as in Lemma 4.3.

Proof. For f =
∑

λ∈Λ∩[−N,N ]d
c(λ)φλ ∈ V pN (Φ,Λ), we try to solve the system of

linear equations

(49) f(xj) =
∑

λ∈Λ∩[−N,N ]d

c(λ)φλ(xj), 1 ≤ j ≤ n

for the coefficients {c(λ)}λ∈Λ∩[−N,N ]d . The system (49) of linear equations can
be rewritten as

(50) Uc = f |{xj :j=1,2,...,n}.

It follows from Lemma 4.4 that
n∑
j=1

|f(xj)|p ≥ ncρ
(
αpp‖c‖

p
`p − γ‖f‖

p
Lp(Rd)

)
≥ ncρ

(
αpp − γCpp

)
‖c‖p`p

holds with probability at least

1−A exp

(
−B

γ2nc2ρ
12Cρ + 2γcρ

)
.

Then UTU is invertible, which implies that

(51) c = (UTU)−1UT f |{xj :j=1,2,...,n}.

Then we can obtain the desired reconstruction formula (48). �
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