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TRACE PROPERTIES AND INTEGRAL DOMAINS, III

Thomas G. Lucas and Abdeslam Mimouni

Abstract. An integral domain R is an RTP domain (or has the radical

trace property) (resp. an LTP domain) if I(R : I) is a radical ideal for
each nonzero noninvertible ideal I (resp. I(R : I)RP = PRP for each

minimal prime P of I(R : I)). Clearly each RTP domain is an LTP

domain, but whether the two are equivalent is open except in certain
special cases. In this paper, we study the descent of these notions from

particular overrings of R to R itself.

1. Introduction

Throughout this article, R denotes an integral domain with quotient field K
and integral closure R′. By an overring of R we mean a domain that contains
R and has the same quotient field. For a nonzero fractional ideal I of R,
(R : I) = {x ∈ K |xI ⊆ R} is the dual of I and Iv = (R : (R : I)) is the
divisorial closure of I (both “with respect to R”). The trace of an R-module B
is the ideal of R generated by the set {ϕ(b) | b ∈ B,ϕ ∈ HomR(B,R)} (see, for
example, [5]). We say that an ideal I of R is a trace ideal if it is the trace of
some R-module. In such a case, I will in fact be its own trace [2, Proposition
7.2], equivalently (R : I) = (I : I). Thus we may restrict our study of “trace
properties” to the noninvertible ideals of R.

A domain R is said to be a TP domain if the trace of each noninvertible
ideal is prime; alternately one may say that R has the trace property [5]. Every
valuation domain is a TP domain (see [1]). It is quite unlikely that a domain
with more than one maximal ideal is a TP domain, for one it would require
that at most one maximal ideal is not invertible (see [5, Corollary 2.11]). On
the other hand, such a domain may have the radical trace property where the
trace of each nonzero noninvertible ideal is a radical ideal. Such a domain is
also referred to as an RTP domain [6]. In the case of a Noetherian domain
R, it is known that R is an RTP domain if and only if RM is a TP domain
for each maximal ideal M [6, Proposition 2.1]. Two types of domains that
are related to RTP domains are TPP domains and LTP domains, introduced
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in [11] and [9], respectively. A TPP domain is one for which the trace of
each noninvertible primary ideal is prime (in fact is its radical [11, Corollary
8]) and an LTP domain is one for which each trace ideal is locally prime when
localized at any of its minimal primes. Evidence suggests that the three notions
may be equivalent. It is known that RTP implies TPP [11, Theorem 4], and
TPP implies LTP [9, Corollary 3]. Also the three are equivalent for Prüfer
domains ([11, Theorem 23] and [9, Theorem 10]), one-dimensional domains
([11, Corollary 6] and [9, page 422]), and Mori domains ([11, Theorem 12] and
[9, Theorem 18]).

With regard to overrings, if R is an RTP domain, then each flat overring
is also an RTP domain [12, Corollary 3.17]. Our motivation is the following
question (which we answer negatively in Example 2.1): If S and T are flat RTP
overrings of R such that R = S∩T , do we have R an RTP domain? In general,
the answer to this question is “NO”, so we restrict ourselves to some particular
overrings more closely related to R.

Recall that a pair of valuation domains V and W with the same quotient
field K are said to be independent if (0) is the only common prime ideal. Since
each overring of V has the form VP for some prime ideal P and PVP = P , the
following are equivalent for V and W .

(1) V and W are independent.
(2) VW = K.
(3) No nonzero prime ideal of V ∩W survives in both V and W .

This notion was extended to pairs of domains with the same quotient field. For
a pair of domains S and T with quotient field K, we say that S and T are
independent if ST = K and no nonzero prime ideal of S ∩ T survives in both
S and T (see [4, Chapter 6]).

We show that if S and T are independent overrings of R such that R = S ∩ T
and each nonzero ideal of R survives in at least one of S and T , then R is an
RTP domain if and only if both S and T are RTP domains. The analogous
statements hold for TPP and for LTP (Theorem 3.2).

For a different type of pair, we consider the case of when S = (A : A) and
T = (B : B), where A and B are comaximal trace ideals of R. In this case, we
have that if both S and T are RTP domains, then so is R (Theorem 2.7). Also
we prove that if R has an idempotent maximal ideal M such that (M : M) is
an RTP domain, then so is R (Theorem 2.12).

In 1952, Jaffard introduced the notion of a ring of Dedekind type as a com-
mutative ring R (with identity) such that each nonzero ideal factors as a finite
product of pairwise comaximal ideals such that each factor is contained in a
unique maximal ideal. He showed that if R is a commutative ring with identity,
then R is of Dedekind type if and only if it has finite character (each nonzero
nonunit is contained in only finitely many maximal ideals) and each nonzero
prime ideal is contained in a unique maximal ideal (see [8, Théorème 6]). Thus
in the terminology introduced by Matlis [14], a ring is of Dedekind type if and
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only if it is h-local. We will make use of both ideas. If I is a nonzero ideal of
an h-local domain R, then (R : I)RM = (RM : IRM ) for each maximal ideal
[3, Lemma 2.3]. A consequence is that if R is h-local, then it is an RTP domain
if and only if RM is an RTP domain for each maximal ideal M (see [13, Theo-
rem 3.11]). Based on the work of Matlis (with regard to h-local domains) and
Jaffard (with regard to the equivalent factoring property mentioned above), we
will make use of the two notions to generalize [13, Theorem 3.9].

Let S = {Sα}α∈A be a family of domains (that are not fields) with the
same quotient field K such that R :=

⋂
α∈A Sα also has the quotient field K.

Such a family is said to be a Jaffard family if for each nonzero ideal I of R,
there is a finite nonempty subset suppS(I) := {α1, α2, . . . , αn} ⊆ A such that
Iα := ISα∩R is equal to R for all α ∈ A\ suppS(I), Iαi(= ISαi ∩R) ( R for
all 1 ≤ i ≤ n and I = Iα1

Iα2
· · · Iαn with Iαi + Iαj = R for all i 6= j.

For a different approach, let P = {Xα}α∈A be a partition of Max(R) and
for each α ∈ A, let Wα =

⋂
{RM |M ∈ Xα}. As above, let suppP(I) = {α ∈

A | IWα (Wα}. Say that P is a Matlis partition of Max(R) if | suppP(rR)| <
∞ for each nonzero nonunit r ∈ R and | suppP(P )| = 1 for each nonzero prime
ideal P of R. Note that suppP(I) is nonempty (but finite) for each nonzero
ideal I of R. Also R is h-local if and only if P = {{Mα} |Mα ∈ Max(R)} is a
Matlis partition of R.

In [4, Theorem 6.3.4] it was proved that each Jaffard family arises from
a Matlis partition and each Matlis partition produces a Jaffard family. With
regard to trace properties we show that if R =

⋂
{Sα |Sα ∈ S}, where S = {Sα}

is a Jaffard family, then R is an RTP domain if and only if each Sα is an RTP
domain (see Theorem 4.1). The analogous equivalences are obtained for TPP
domains and for LTP domains.

2. Descent trace properties

In this section, we will study the descent of the radical trace property from
special overrings of R to R itself. Our study is motivated by the following
question.

Question: Suppose R = S ∩ T for some domains S and T with the same
quotient field as R. If both S and T are RTP domains, is R an RTP domain?
The answer is “No” in general” even if in the case where both S and T are flat
over R as shown by the following example.

Example 2.1. Let V = k(X,Y)[[Z]] = k(X,Y) + M , S = k(X)[Y] + M and
T = k(Y)[X] + M . By [10, Theorem 13] S and T are Prüfer RTP domains.
However R = S∩T = k[X,Y]+M is not an RTP domain again by [10, Theorem
13] as k[X,Y] is not an RTP domain. Moreover, S = RX and T = RY , where
X = k[X] \ 0 and Y = k[Y] \ 0. Thus S and T are flat over R.

It is well-known that if I and J are trace ideals of R, then I ∩ J need not be
a trace ideal of R [7, Examples 5.2 and 5.3], but it is the case that IJ(R : IJ)
is contained in I ∩ J . Thus if IJ = I ∩ J , then I ∩ J is a trace ideal of R.
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Lemma 2.2. Let I and J be a pair of trace ideals of a domain R.

(1) IA(R : IA) ⊆ I for each nonzero ideal A of R.
(2) IJ(R : IJ) ⊆ I ∩ J .
(3) If I ∩ J = IJ , then I ∩ J is a trace ideal of R.

Proof. Let A be a nonzero ideal of R. Then IA(R : IA) = IA((R : I) : A) =
IA((I : I) : A) = IA(I : IA) ⊆ I. Hence we have IJ(R : IJ) ⊆ I ∩ J . Also, if
I ∩ J = IJ , then we have (R : I ∩ J) = (I ∩ J : I ∩ J) and so I ∩ J is a trace
ideal of R. �

Recall that an ideal J of a domain R is said to be SV-stable if J is an
invertible ideal of (J : J).

Lemma 2.3. Let I and J be a pair of trace ideals of a domain R such that
I ∩ J = IJ . If J is SV-stable, then IJ−1 is a trace ideal of J−1.

Proof. By Lemma 2.2, I ∩ J = IJ is a trace ideal of R. Thus (IJ : IJ) = (R :
IJ) = ((R : J) : I) = (J−1 : IJ−1).

For t ∈ (R : IJ) we have tIJ ⊆ IJ and therefore tIJJ−1 ⊆ IJJ−1. If J
is SV-stable, we may cancel the J to obtain tIJ−1 ⊆ IJ−1. Thus in this case
IJ−1 is a trace ideal of J−1. �

Theorem 2.4. Let J be a SV-stable trace ideal of R such that (J : J) is an
RTP domain and I a trace ideal of R.

(1) If I is comaximal with J , then I is a radical ideal of R.

(2) If J = P is prime and I ⊆ P , then I contains both (
√
I)2 and IP (R :

IP ).

Proof. (1) Since J is a trace ideal, (J : J) = J−1. If I + J = R, then we have
I ∩ J = IJ . Hence by Lemma 2.3, IJ−1 is a trace ideal of J−1. Moreover,
(J−1 : IJ−1) = (IJ : IJ). If J−1 is an RTP domain, then IJ−1 is a radical
ideal of J−1. To see that I is a radical ideal, let x ∈ R be such that xn ∈ I for
some n ≥ 1. Then x ∈ IJ−1 since IJ−1 is a radical ideal of J−1. It follows that
xJ ⊆ IJ . Checking locally shows that x ∈ I. Specifically, if M is a maximal
ideal that does not contain I, then we certainly have x ∈ RM = IRM . On the
other hand if N is a maximal ideal that contains I, then it does not contain J
and in this case we have x ∈ xRN = xJRN ⊆ IJRN = IRN . Therefore I is a
radical ideal of R.

(2) If I is a trace ideal that is contained in P , then (I : I) = (R : I) ⊇ (R :
P ) = (P : P ) and (R : P 2) ⊆ (R : PI) = (P−1 : I) = (I : PI). It follows that
I = IP−1 = IP (R : P 2) ⊆ PI(R : PI) = PI(I : PI) ⊆ I. Since P−1 is an

RTP domain, I(P−1 : I) is a radical ideal of P−1. Let x, y ∈
√
I. Then x ∈ P

and y ∈ I(P−1 : I). Therefore xy ∈ I and we have (
√
I)2 ⊆ I. �

Corollary 2.5. Let M be a maximal ideal of R. If M is SV-stable and (M : M)
is an RTP domain, then each trace ideal of R that is comaximal with M is a
radical ideal of R.
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Proof. If M is SV-stable, then either it is an invertible ideal of R = (M : M)
or (R : M) = (M : M) ) R. There is nothing to prove if R = (M : M) and in
the other case we simply apply Theorem 2.4. �

Theorem 2.6. Let A be an (integral) ideal of a domain R of the form A =
JE, where J is an invertible (fractional) ideal of R and E is an idempotent
(fractional) ideal of R. If (A : A) is an RTP domain and I is a trace ideal of
R that is comaximal with A, then I is a radical ideal of R.

Proof. Set A = JE, where JJ−1 = R and E = E2. Since J is invertible,
T = (A : A) = (E : E). Let I be a trace ideal of R such that R = I + A
and write 1 = a + b for some a ∈ A and b ∈ I. Let x ∈ (T : IE). Then
xIE ⊆ T and so xIE = xIE2 ⊆ E. Hence xIA = xIJE ⊆ JE = A and so
xA ⊆ (A : I) ⊆ (R : I) = (I : I). Thus xIJE = xIA ⊆ I and so xIE ⊆ IJ−1.
Hence xIE ⊆ E ∩ IJ−1 ⊆ IE. (Notice that E ∩ IJ−1 ⊆ IE. Indeed, let
y ∈ E ∩ IJ−1. Then y = ya + yb. Since ya ∈ IJ−1A = IJ−1JE = IE
and yb ∈ IE, y ∈ IE.) Hence (T : IE) = (IE : IE) and since T is an
RTP domain, IE is a radical ideal of T . Now let x ∈ R such that xn ∈ I
for some positive integer n. For every e ∈ E, en ∈ E and so (xe)n ∈ IE.
Then xe ∈ IE since IE is a radical ideal of T . Hence xE ⊆ IE. Since
xa ∈ xA = xJE ⊆ JIE = IA ⊆ I and xb ∈ I, x = xa+ xb ∈ I as desired. �

Theorem 2.7. Let A and B be trace ideals of an integral domain R. If A and
B are comaximal and both (A : A) and (B : B) are RTP domains, then R is
an RTP domain.

Proof. Assume A and B are comaximal and both A−1 = (A : A) and B−1 =
(B : B) are RTP domains.

Let I be a trace ideal of R. Then by Lemma 2.2, both IA(R : IA) and
IB(R : IB) are contained in I.

Since both A−1 and B−1 are RTP domains, I(A−1 : I) is a radical ideal of
A−1 and I(B−1 : I) is a radical ideal of B−1.

Let x ∈
√
I and let a ∈ A and b ∈ B be such that a + b = 1. We have

x ∈ I(A−1 : I) = I(R : IA) and x ∈ I(B−1 : I) = I(R : IB). Thus xa ∈ IA
and xb ∈ IB. It follows that x = xa + xb is in I and therefore I is a radical
ideal of R. Hence R is an RTP domain. �

The proof of the previous theorem can easily be generalized to a finite set
of trace ideals whose sum is R.

Theorem 2.8. Let A1, A2, . . . , An be trace ideals of a domain R such that
(Ai : Ai) is an RTP domain for each Ai. If A1 + A2 + · · · + An = R, then R
is an RTP domain.

Proof. Assume A1 + A2 + · · · + An = R. Then there are elements a1 ∈ A1,
a2 ∈ A2, . . . , an ∈ An such that a1 + a2 + · · ·+ an = 1.
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Let I be a trace ideal of R and let x ∈
√
I. Since (R : Ai) = (Ai : Ai) is

an RTP domain, I((R : Ai) : I) = I(R : IAi) is a radical ideal of (R : Ai).
Hence x ∈ I(R : IAi). Also, by Lemma 2.2, IAi(A

−1
i : I) = IAi(R : IAi) ⊆ I.

Thus x = xa1 + xa2 + · · ·+ xan ∈ I and we have that I is a radical ideal of R.
Therefore R is an RTP domain. �

Theorem 2.9. Let A and B be comaximal ideals of a domain R such that A−1

and B−1 are TP domains. Then R is a TP domain if and only if each trace
ideal of R is a contraction of either a prime ideal of A−1 or a prime ideal of
B−1.

Proof. Since A + B = R, R = A−1 ∩ B−1. Let I be a trace ideal of R and
set P = I(A−1 : I) and Q = I(B−1 : I). Clearly PA ⊆ I and QB ⊆ I and
I = P ∩Q (for if 1 = a+ b for some a ∈ A and b ∈ B, then for every x ∈ P ∩Q,
x = xa + xb ∈ PA + QB ⊆ I). Since I is a proper ideal of R and A−1 and
B−1 are TP domains, either P is a prime ideal of A−1 or Q is a prime ideal of
B−1 (for if P = A−1 and Q = B−1, then I = P ∩ Q = A−1 ∩ B−1 = R). If
P = A−1, necessarily Q is a prime ideal of B−1 and I = Q∩R; and if Q = B−1,
necessarily P is a prime ideal of A−1 and I = P ∩R. Assume that P is a prime
ideal of A−1 and Q is a prime ideal of B−1. Since I = (P ∩ R) ∩ (Q ∩ R), if
R is a TP domain, I must be a prime ideal of R and so P ∩R and Q ∩R are
comparable. Thus I = P ∩R or I = Q ∩R, as desired.

The converse is trivial. �

Lemma 2.10. If I is a trace ideal of R and B is an idempotent ideal, then B
and IB are trace ideals of both R and B−1 = (B : B).

Proof. First note that if B is idempotent, then BB−1 = B2B−1 ⊆ B. Hence
(B : B) = B−1 = (R : B2) = (B−1 : B). So B is a trace ideal of both R and
(B : B). The proof that IB is a trace ideal of both R and (R : B) is only a bit
more complicated.

We have (R : IB) = (R : IB2) = ((R : B) : IB) and alternately, (R : IB) =
((R : I) : B) = ((I : I) : B) = (I : IB) ⊆ (IB : IB2) = (IB : IB) ⊆ (R : IB).
Thus (R : IB) = (IB : IB) = ((R : B) : IB). �

Recall that the maximal ideal of a valuation domain is either idempotent or
invertible. Using this fact it is rather easy to construct a domain R that is not
an RTP domain but does have a (single) trace ideal A such that (A : A) is an
RTP domain, where A is either idempotent or SV-stable.

Example 2.11. Let V be a valuation domain with (nonzero) maximal ideal
M such that the residue field V/M is the quotient field of an almost Dedekind
domain D that is not a Dedekind domain. Then the pullback of D over M is a
Prüfer domain R that is not an RTP domain. But (R : M) = (M : M) = V is
an RTP domain (in fact a TP domain), with M either idempotent or invertible
as an ideal of V – the latter obviously equivalent to M being a SV-stable trace
ideal of R.



TRACE PROPERTIES AND INTEGRAL DOMAINS, III 425

In the previous example, the ideal M is a nonmaximal prime ideal of R.
What if instead we have M maximal with (M : M) an RTP domain, is that
enough to ensure that R is an RTP domain? In Example 2.13, we show that
R need not be an RTP domain if M is an SV-stable maximal ideal such that
(M : M) is an RTP domain. On the other hand, we show in our next result
that if M is an idempotent maximal ideal, then R is an RTP domain whenever
(M : M) is an RTP domain. Note that in this case, M is a radical ideal of
(M : M) and each minimal prime of M in (M : M) is a maximal ideal of
(M : M) (since ((M : M) : J) = (M : MJ) = (M : M) for each ideal J of
(M : M) that contains M).

Theorem 2.12. If M is an idempotent maximal ideal of a domain R such that
(M : M) is an RTP domain, then R is an RTP domain.

Proof. Let I be a trace ideal of R. If I+M = R, by Theorem 2.6, I is a radical
ideal of R. Assume that I ⊆M . Let x ∈

√
I be such that x2 ∈ I. Since I ⊆M ,√

I ⊆ M so x ∈ M and therefore x3 ∈ IM =
√
IM (Lemma 2.10) which puts

x ∈ IM and therefore x ∈ I and we have that I is a radical ideal of R. Hence
R is an RTP domain. �

Example 2.13. An example of a domain R with a SV-stable trace maximal
ideal M such that (M : M) is an RTP domain but R is not an RTP domain.
Let k be a field, X an indeterminate over k and set R = k[[X2,X5]]. Clearly R
is a one-dimensional local Noetherian domain with maximal ideal M = (X2,X5)
and M−1 = k[[X2,X3]]. Thus R is not an RTP domain but M−1 is an RTP
domain. Also it is clear that M is SV-stable since M = X

2k[[X2,X3]].

3. Independent pairs

Recall from above that a pair of domains S and T with the same quotient
field K are independent if ST = K and no nonzero prime ideal of S ∩ T survives
in both S and T . In the event S ∩ T also has the quotient field K, then all that
one needs to check is that no nonzero prime ideal of S ∩ T survives in both S
and T . In fact, a slightly weaker condition suffices.

As noted earlier, if R is an RTP domain, then each flat overring of R is an
RTP domain [12, Corollary 3.17]. The analogous implication holds for LTP
domains [12, Corollary 3.20]. Next we show that RTP can also be replaced by
TPP.

Theorem 3.1. If R is a TPP domain, then each flat overring of R is also a
TPP domain.

Proof. Assume R is a TPP domain and let S be a flat overring of R. Then R
is also an LTP domain [9, Corollary 3] and thus we at least have that S is an
LTP domain [12, Corollary 3.20].

Let Q′ be a nonzero noninvertible primary ideal of S with P ′ :=
√
Q′.

Then since S is flat over R, Q := Q′∩R is a P -primary ideal of R, where
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P =
√
Q = P ′∩R with Q′ = QS and P ′ = PS. Thus Q(R : Q)S ⊆ Q′(S : Q′)

and so Q is not an invertible ideal of R. Since R is a TPP domain we have
Q(R : Q) = P [11, Corollary 8] and thus we at least have that Q′(S : Q′) ⊇
Q(R : Q)S = PS = P ′. As Q′ is not invertible, Q′(S : Q′) = P ′ if P ′ is a
maximal ideal of S.

In the event that P ′ is not a maximal ideal of S′, we at least have Q′(SN ′ :
QSN ′) ⊇ P ′SN ′ for each maximal ideal N ′ of S′.

Let N ′ be a maximal ideal of S that properly contains P ′. Then N := N ′∩R
is a prime ideal of R that contains P with N ′ = NS and SN ′ = SNS = RN .
Moreover, RN is a TPP domain. As PRN is a nonmaximal prime ideal of RN ,
QRN (RN : QRN ) = PRN [11, Theorem 6 and Corollary 8]. But we also have
QRN = Q′SN ′ and PRN = P ′SN ′ . Hence P ′SN ′ ⊆ Q′(S : Q′)SN ′ ⊆ Q′(SN ′ :
Q′SN ′) = P ′SN ′ and therefore Q′(S : Q′) = P ′. Thus S is a TPP domain. �

Theorem 3.2. Let R be a domain with a pair of proper independent overrings
S and T such that R = S ∩ T and each nonzero ideal of R survives in at least
one of S and T .

(1) R is an RTP domain if and only if both S and T are RTP domains.
(2) R is a TPP domain if and only if both S and T are TPP domains.
(3) R is an LTP domain if and only if both S and T are LTP domains.

Proof. Since both S and T are flat overrings of R, if R is an RTP domain, then
both S and T are RTP [12, Corollary 3.17]. For TPP, both S and T are TPP
domains if R is a TPP domain (Theorem 3.1). Also, if R is an LTP domain,
then both S and T are LTP domains [12, Corollary 3.20].

For the converse in the RTP and LTP cases we can start with a nonzero
trace ideal I of R. By [4, Theorem 6.2.3], I = IS ∩ IT . Also, by [4, Theorem
6.2.2], IS = I(R : I)S = I(S : IS) and IT = I(R : I)T = I(T : IT ). Hence IS
is a trace ideal of S and IT is a trace ideal of T .

We start with LTP, then consider RTP and finish with TPP.
By [4, Theorem 6.2.3], if P is a minimal prime of I, then P survives in

exactly one of S and T . If PS 6= S, then PS is a prime ideal of S such that
RP = SPS . If S is an LTP domain, then IRP = ISPS = PSSP = PRP . If,
instead, PT 6= T and T is an LTP domain, then IRP = ITPT = PTPT = PRP .
Hence R is an LTP domain if both S and T are LTP domains.

If both S and T are RTP domains, then IS is a radical ideal of S and IT is
a radical ideal of T . Since I = IS ∩ IT , I is a radical ideal of R. Thus R is an
RTP domain when both S and T are RTP domains.

Finally in the case both S and T are TPP domains, suppose N is a nonzero
prime ideal of R and Q is an N -primary ideal of R that is not invertible.
As in the LTP case, either NS is a prime ideal of S with NT = T = QT
or NT is a prime ideal of T with NS = S = QS. By [4, Theorem 6.2.2],
Q(R : Q)S = Q(S : QS) and Q(R : Q)T = Q(T : QT ). Moreover, Q(R : Q) =
Q(S : QS)∩Q(T : QT ) by [4, Theorem 6.2.3].
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If NS is a prime ideal of S, then QS is a NS-primary ideal with
√
QS = NS.

Since S ∩ T = R and QT = T in this case, QS is not invertible as an ideal of
S. Thus Q(S : QS) = NS [11, Corollary 8] and it follows that Q(R : Q) =
NS ∩NT = N .

Similarly, Q(T : Q) = NT when NT is a prime ideal of T and we again have
Q(R : Q) = N . Thus R is a TPP domain. �

4. Jaffard families and Matlis partitions

Recall that a domain R is said to be of Dedekind type if each nonzero ideal
factors as a finite product of pairwise comaximal ideals with each factor in a
unique maximal ideal [8]. Jaffard proved that R is of Dedekind type if and
only if it has finite character and each nonzero prime ideal is contained in a
unique maximal [8, Théorème 6]. Thus R is of Dedekind type if and only if it
is h-local.

Let S = {Sα}α∈A be a family of domains (that are not fields) with the
same quotient field K such that R :=

⋂
α∈A Sα also has the quotient field K.

Such a family is said to be a Jaffard family if for each nonzero ideal I of R,
there is a finite nonempty subset suppS(I) := {α1, α2, . . . , αn} ⊆ A such that
Iα := ISα∩R = R for all α ∈ A\ suppS(I), Iαi(= ISαi ∩R) ( R for all
1 ≤ i ≤ n and I = Iα1

Iα2
· · · Iαn with Iαi + Iαj = R for all i 6= j. Since

R =
⋂
α∈A Sα, the factoring property implies I =

⋂
α∈A ISα.

Theorem 4.1. Let R be a domain and let S = {Sα} be a Jaffard family such
that R =

⋂
Sα.

(1) R is an RTP domain if and only if each Sα is an RTP domain.
(2) R is a TPP domain if and only if each Sα is a TPP domain.
(3) R is an LTP domain if and only if each Sα is an LTP domain.

Proof. By [4, Theorem 6.3.1], each Sα is R-flat. Thus Sα is an RTP domain
when R is an RTP domain [12, Corollary 3.17], Sα is a TPP domain when R
is a TPP domain (Theorem 3.1), and Sα is an LTP domain when R is an LTP
domain [12, Corollary 3.20].

Let I be a nonzero noninvertible ideal of R and for each α, let Jα = I(Sα :
ISα). By [4, Theorem 6.3.1], I(R : I)Sα = Jα and therefore I(R : I) =

⋂
Jα.

If Sα is an RTP domain, then Jα is a radical ideal of Sα (perhaps equal to Sα).
Thus I(R : I) is a radical ideal of R if each Sα is an RTP domain.

For TPP, start with a nonzero noninvertible primary ideal Q of R and let
P :=

√
Q. By [4, Theorem 6.3.1], suppS(P ) = {β} for some Sβ ∈ S. Then PSβ

is a prime ideal of Sβ and QSβ is a primary ideal of Sβ with
√
QSβ = PSβ .

Since Q is not invertible as an ideal of R, Q(R : Q) is contained in a maximal
ideal M . As M contains P , it must be that MSβ is a maximal ideal of Sβ .
Moreover, we have MSβ ⊇ Q(R : Q)Sβ = Q(Sβ : QSβ). Hence QSβ is not an
invertible ideal of Sβ . If Sβ is an TPP domain, then we have Q(R : Q)Sβ =
Q(Sβ : QSβ) = PSβ [11, Corollary 8]. As both Q and P blow up in all other
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Sαs, we have Q(R : Q) = P as they are equal when extended to each Sα
([4, Theorem 6.3.1]). Thus R is a TPP if each Sα is a TPP domain.

Finally we show that R is an LTP domain if each Sα is an LTP domain. For
this we may start with a trace ideal I of R with minimal prime P . As in the
TPP case, P is survives in a unique Sβ . Moreover, RP = (Sβ)PSβ and PRP =
P (Sβ)PSβ . Since I(R : I) = I, we also have ISβ = I(R : I)Sβ = I(Sβ : ISβ).
Hence ISβ is a trace ideal of Sβ . Also PSβ is a minimal prime of ISβ and thus
IRP = I(Sβ)PSβ = P (Sβ)PSβ = PRP . Therefore R is an LTP domain. �

Recall that a domain R is said to be h-local if each nonzero nonunit is
contained in only finitely many maximal ideals and each nonzero prime ideal
is contained in a unique maximal ideal. A domain for which each nonzero
nonunit is contained in only finitely many maximal ideals is said to have finite
character. Notice that R is h-local if and only if P = {{Mα} |Mα ∈ Max(R)}
is a Matlis partition of R.

Corollary 4.2 (cf. [13, Theorem 3.9]). Let R be an h-local domain. Then R
is an RTP domain if and only if RM is an RTP domain for each maximal ideal
M .

In the case R is one-dimensional, then it is h-local if and only if it has a finite
character. Moreover, a local one-dimensional RTP domain is a TP domain. In
contrast, [11, Example 35] presents an example of local two-dimensional RTP
domain that is not a TP domain.

Corollary 4.3. If R is a one-dimensional domain with finite character, then
R is an RTP domain if and only if RM is a TP domain for each maximal ideal
M .

Proof. If R is one-dimensional, then it is h-local if and only if it has a finite
character. Also for each maximal ideal M , the only nonzero prime of RM is
MRM . Hence RM is a TP domain if and only if it is an RTP domain. The
result follows from Corollary 4.2. �
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