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MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS
IN EVEN CHARACTERISTIC

SUNGHAN BAE AND HWANYUP JUNG

ABSTRACT. For any positive integer p, we compute the mean value of
the p-th derivative of quadratic Dirichlet L-functions over the rational
function field Fq(t), where ¢ is a power of 2.

1. Introduction

In a series of papers [1,2,5], Andrade studied the mean values of derivatives
of L-functions in function fields based on the use of the approximate functional
equation for function field L-functions developed by Andrade and Keating in [4].
These results can be seen as a function field version of moments of derivatives of
the Riemann zeta function as given by Ingham [11] which are further developed
by the work of Conrey [8], Gonek [10] and Conrey, Rubinstein and Snaith [9].

For any non-square polynomial D in Fy[t], where ¢ is odd, let L(s, xp)
be the Dirichlet L-function associated to the quadratic character yp defined
by Jacobi symbol in F,[t]. In [1], Andrade proved several mean values re-
sults for the derivatives of Dirichlet L-functions in function fields when the
average is taken over all discriminants, i.e., over all monic polynomials of a
prescribed degree in F,[t]. For any integer ¢ > 1, he gave an exact formula for
> p LW (3, xp), where D runs over all non-square monic polynomials in Fy|[t]
of given degree and L(®) (s, xp) is the p-th derivative of L(s,xp) ([1, Theorem
1.1, Theorem 1.2]). In [2], Andrade investigated the mean values of deriva-
tives of quadratic Dirichlet L-functions over function fields when the average is
taken over monic irreducible polynomials P in F,[t]. He obtained asymptotic
formulas for -, L'(,xp) and > 5 L” (5, xp) as deg(P) goes to infinity and ¢
fixed, where P runs over all monic irreducible polynomials of a prescribed de-
gree in Fy[t]. Let #,, denote the set of monic square-free polynomials of degree
n in Fy[t]. In [5], Andrade and Rajagopal studied the mean values of second
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1
5-
gave an asymptotic formulas for >, L"(%,XD), where D runs over Hog41,
as g goes to infinity and ¢ fixed ([5, Theorem 2.1]). Recently, Andrade and
Jung [3] extended the work of Andrade and Rajagopal to the mean values of
p-th derivatives of Dirichlet L-functions L(s,xp) at s = % They gave as-
ymptotic formulas for > L(”)(%,XD), where D runs over Hagq1 or Hogio,
as g goes to infinity and ¢ fixed ([3, Theorem 3.1, Theorem 3.2]). The aim of
this paper is to study the mean values of derivatives of Dirichlet L-functions

L(s,x,) at s = 3 in even characteristic case. We give asymptotic formulas

2
for Zuezgﬂ " (%, xu) and > _DeF, LW (L x,) as g goes to infinity and ¢
fixed (Theorem 3.1, Theorem 3.2), where Z,41 and Fy4 are the sets of ratio-
nal functions which play the roles of Hag11 and Hag42 in even characteristic,
respectively. In Appendix, we also consider the case of non-maximal orders, as
was done in [1] in odd characteristic case.

derivatives of Dirichlet L-functions L(s,xp) at s = More precisely, they

2. A short background on function fields

Let k = F,(¢) be the rational function field with a constant field Fy, where ¢
is a power of 2, and A = F[t]. We denote by AT the set of monic polynomials in
A and by P the set of monic irreducible polynomials in A. Any monic irreducible
polynomial P € P will be also called a prime polynomial throughout the paper.
For any positive integer n, let A, = {f € A : deg(f) =n} and A = AT NA,,
P, =PNA,.

The zeta function (u(s) of A is defined to be the following infinite series:

1\t
(2.1) => \fl =11 <1 |P|s) ., Re(s) > 1,
feAt peP
where |f| = ¢3°8(f). Tt is well known that (4(s) = #

In this section, we recall some basic facts on quadratic function field in even
characteristic. For more details, we refer to [6, §2.2, §2.3].

2.1. Quadratic function field in even characteristic

Any separable quadratic extension K of k is of the form K = K,, = k(z,),
where z, is a zero of X?> + X 4+ u = 0 for some v € k. Fix an element
¢ € Fy\ p(F,), where p : k — k is the additive homomorphism defined by
p(r) = 2% + . We say that u € k is normalized if it is of the form

(2.2) u = Z Z ng” T+ ZagT%_l + a,

where P; € P are distinct, Q;; € A with deg(Q;;) < deg(P;), Qie, # 0, a €
{0,¢}, ap € Fy and v, # 0 for n > 0. Let v € k be normalized one as in
(2.2). The inﬁnite prime (1/t) of k splits, is inert or ramified in K,, according
asn=0and a =0,n=0and a« =&, or n > 0. Then the field K, is called
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real, inert imaginary, or ramified imaginary, respectively. The discriminant D,,
of K, is given by

oo [ if n =0,
ST, PR (1/0)2 ifn >0,

and the genus g, of K, is given by
1
(2.3) Gu= 3 deg(D,,) — 1.

For each M € A*, write r(M) =[] p|,, P and t(M) = M -r(M). For P € P,
let vp be the normalized valuation at P, that is, vp(M) = e, where P¢||M.

Let B be the set of monic polynomials M such that vp(M) = 0 or odd for any

P € P, that is, (M) is a square, and C be the set of rational functions % €k

such that D € A, M € B and deg(D) < deg(M). Also we let £ be the set of
rational functions % € C of the form

Lp

D Ap.;
M:ZZPJLN

P|M i=1

where deg(Ap,;) < deg(P) forany P | M and forall1 <i < {p = 1(vp(M)+1).
Let F be the set of rational functions £ € € such that Apy, # 0 for all P | M
and F' = {u+ & : u € F}. For any positive integer n, let

B, ={M € B :deg(t(M)) = 2n}, Cn:{%€C:M€Bn},
En=ENC,, Fon=FN&, F,={u+&:ueF,}.

Under the correspondence u — K,,, F,, (resp. F,,) corresponds to the set of all
real (resp. inert imaginary) separable quadratic extensions K, of k with genus
n — 1. For any positive integer s, let G, be the set of polynomials F(T) € A of
the form

FT)=a+ ZaiT%*l, where o € {0,(}, a; € Fy and o, # 0.
i=1

Let Fo = {0}. For any integers r > 0 and s > 1, let Z, o) = {u+ F : u €
Fr, F € Gs}. For any integer n > 1, let Z,, be the union of all Z,. ), where (r, s)
runs over all pairs of nonnegative integers such that s > 0 and r+s = n. Then,
under the correspondence u — K,, Z, corresponds to the set of all ramified
imaginary separable quadratic extensions K, of k with genus n — 1.

We have that #B,, = ¢", #&, = ¢®", #F, = (u(2)71¢* and #I,, =
2¢a(2)71g*>" ! (see [6, Lemma 2.3]). For each M € B, let Cps be the set of
rational functions u € C whose denominator divides M, &y = £ NCyp and
Fav = FNCyy. Note that &, (resp. Fy,) is the disjoint union of £y (resp. Far)
with M € B,,. Let M = Ipinm Pwr(M+1)/2 e also note that #Ey = | M|

and #Fy = ®(M), where ®(M) = #(A/MA)*.
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2.2. Hasse symbol and L-functions

For any v € k whose denominator is not divisible by P € P, the Hasse
symbol [u, P) with values in Fy is defined by

fu, P) 0 if X2+ X =u (modP) is solvable in A,
u’ = .
1 otherwise.

For N € A prime to the denominator of u, if N = sgn(N)[[;_; P, where
sgn(N) is the leading coefficient of N and P; € P are distinct and e; > 1, we
define [u, N) to be >°7_, e;[u, P;).

For u € k and 0 # N € A, we also define the quadratic symbol:

{ u } B {(—1)[“71\7) if N is prime to the denominator of u,
~/ =

0 otherwise.

This symbol is clearly additive in its first variable, and multiplicative in the
second variable.

For the field K,, we associate a character x, on AT which is defined by
xu(f) = {%}, and let L(s, x,) be the L-function associated to the character
Xu: for s € C with Re(s) > 1,

L) = 3 ) (1 B xu(P))_l_

P AT

S S

It is well known that L(s, x,) is a polynomial in ¢—°. Letting z = ¢~%, write
L(z, xu) = L(s,xu). Then, L£(z, xx) is a polynomial in z of degree 2g, + (1 +
(—1)*), where (u) = 1 if K,, is ramified imaginary and (u) = 0 otherwise.
Also we have that £(z,x,) has a “trivial” zero at z =1 (resp. z = —1) if and
only if K, is real (resp. inert imaginary), so we can define the “completed”
L-function as

L(z,Xu) if K, is ramified imaginary,
(2.4) Lz, xu) = (1—2)71L(2,xu) if K, is real,
(1+2)71L(2,xu) if K, is inert imaginary,

which is a polynomial of even degree 2g, satisfying the functional equation
* * 1
(2.5) £ = @)L (o).

3. Statement of results

Let x be a positive integer. Let L(*) (s, x,,) be the u-th derivative of L(s, xu)-
For any integer n > 0, let J,,(n) be the sum of the u-th powers of the first n
positive integers, i.e., J,(n) = Y_,_; ¢*. Faulhaber’s formula tell us that J,(n)
can be rewritten as a polynomial in n of degree u+ 1 with zero constant term,
that is, J,(n) = m+=11 Ju(m)n™
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Let
=S (L)
PR o (17 TP
where p(L) is the Mobius function for polynomials. So for any integer m > 0,
we have
deg m
) Cingr = 2 T o 2 P

LeA+ P ‘L

We are now ready to state two of the main results of this paper. The first
theorem is the mean values of derivatives of Dirichlet L-functions associated to
the imaginary quadratic function field K, with u € Zy4;.

Theorem 3.1. Let u be a fized positive integer and q be a fized power of 2.
Assume that ¢ > 2. Then we have

Z L(“)(%aXu)

o, gy
:H)f;{ﬂ( (1), ([g]>+(c_?<l“;<q)>>
+(ﬁ£fﬂgixkl£ﬁ
22?2?1 mﬂ_o (T/D o 7:_11 jm<a>m +0(g'2%q39).

We remark that the main term in Theorem 3.1 is two times of the one in
[3, Theorem 3.1] since under the correspond D — k(\/ﬁ), Hog+1 UvHog+1
corresponds to the set of all ramified imaginary separable quadratic extensions
K of k with genus ¢ in odd characteristic case, where 7 is any non-square
element of Fy.

The second theorem is the mean values of derivatives of Dirichlet L-functions
associated to the real quadratic function field K, with v € Fg41.

Theorem 3.2. Let u be a fized positive integer and q be a fized power of 2.
Assume that ¢ > 2. Then we have
Z L(#)(%aXU)
Tt (—=Ing)~
2Mq2g+2

Ca(2)

GW(1) > By a) G (1)
(Clngr) @ &MY (Tge

a

(G(l)Ju([‘é]) n
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e

—G()(g+ 1) HE T G(1)g

|_aziis z”: g“ "ot (3)
—Ing)™

m=0

4 g9t Z ! (29)(1(_2)06(&)(%) (G(I)Jc([‘q_l]) i G(C)( ) )

1blel _ b 2 _ c
¢a(2) iy aldblc! (=Ing) (—Ing)
2942 ' a(_9)esb)(Lly ctl (a)
q I (29)°(=2)6"(3) ., G( g 39
- : 23 ) S ogate),
Ca(2) i aldble! (—Ing) p (—Ing)

where §(s) = =%

4. Main tools

In this section we present a few auxiliary results that will be used in the
proof of the main theorems.

Lemma 4.1. For any f € A} with n < g, which is not a perfect square, we

have
u n
> {f} < 2% ggf.
u€lgta
Proof. This is Proposition 3.20 in [6]. d

Lemma 4.2. Let n be a positive integer. For any f € A , which is not a
perfect square, we have

u d n
> )<
u€Fn
Proof. This is Proposition 3.15 in [6]. O

Lemma 4.3. Let L € AT. Given any € > 0, we have
2n

q —1y— €
> o) = LTI+ 1P +0 (¢
A Ca(2)
feay P|L
(f,L)=1
Proof. This is Lemma 3.3 in [6]. O

Applying Lemma 4.3 with € = %, we have the following corollary.
Corollary 4.4. We have

2n+£ M(D) sp 40
an 3 3 e =gm X praeey o)

LeAf feal DeAf,
(f,.L)=1 -
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Lemma 4.5. Let m > 0 be an integer. Then we have

pDdegm™ L,
2 WMaie) W

Leat
deg(L)>[4]

Proof. This is Lemma 3.4 in [5]. O
Lemma 4.6. For he {g— 1,9} and m € {0,1,...,u}, we have
I

W““ZZ >, 2!

SE

{= L€A+S 1(]{\4/[%[)3g wE€Lns
2m+1q2g+1 G(m)( )
- 2 (cwatsh + i)
gmtlg2otl T G (1)
- Jm(a +0(9"q?).
@ 2 ) gy HOW)
Proof. Put
(5]
M) = %’HZZ >, Xt
1= LeAf s= 1 MeBs u€lm
(M,L)=1
Since #Zy; = Q%mqﬁl—%(m, we have
2m+1q9+1 [%] . g ~
m(p) = g~ - d(M
M) = =255 D> D e
£=0 s=1 LeAf Meaf

(M,L)=1
Then, by using (4.1), we can get

2m+1q2g+1 [%]

(D) &
Mo (1) = 24 ng Z +0(g™q?)
@ = pent, [DIT1pp(1+1P))
gm+1420+1 w(D) ¥
42y =—2L_ ¥ 2, (M+Olna®).
Ca(2) DeA:[b] 1P HP‘D(l +1P) deg(D)<¢<[3]

For integer m > 0, recall that J,,,(n) = >",_, £™, which is a polynomial in n of
degree m + 1 with zero constant term. Write J,,(n) = Zmﬁl Jm(a)n®. Then
we have

m—+1

(4.3) S 0= Tn([5]) + deg(L) ng ) deg(L

deg(L)<e<[%]
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Inserting (4.3) into (4.2), we have

_ gmiige u(D)
Munlt0 = =gy &) 2 DI, TP
<[ ]
gmigratl (D) deg(L)™
YTG@ 2 Dilep0 17D
<(%

m+1,2g+1 M+l e a 3g

(1.4 N ) YD DB .

Cam g s DU

<[4

Then, from (4.4), by using Lemma 4.5, we get that

2m+1q2g+1 /J/(D)
Mh,m(,u) = 7Jm([ﬁ])
e ) 2 B0 v
L 2 (D) deg(L)"
(@ 2 DI+ 7]
2m+1q2q+1 A D) deg(L)* 39
4.5 +0(g™q2).
49 AR HP|D @+ O
We also recall that for any integer n > 0, we have
G(" D) deg(D)™
(4.6)
lnq D%A:Jr |Dl* HP\D(l +1[P[)
Finally, by (4.5) and (4.6), we get
2m+1q2g+1 ( G(m)(l)
Mm = TN G1J77Lh+>
h, (HJ) CA(Q) ( ) ([2]) (_ lnq)m
gmtlg2atl T G (1) 20
———— D Jm(a)——-+0(g"q?).
G 2 @) Ty g + O™ )

Lemma 4.7. Forhe€ {g—1,g9} and m € {0,1,...,u}, we have

m 2g 2 (m)
APt Y Y Y 1= E (g + S

£=0 LGA+ MEeBy+1 ueFm
M,L)=1

[

[N

]

2mq2g+2 m+1 ] G(a)(l) 39
— m(a)———=—+0(g"q?).
A a:lj ( )(—lnq)“ (9™q?)
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Proof. Put

5l

YRR SCUTED DD Vi) o

L= LeA"’ MeBgt1 ueFm
,L)=1

Since #Fy; = ®(M), we have

h
15

Nom (1) = %m*f > > @

t= LehAf JMGA
(M, L) 1

Then, by using (4.1), we can get

[ME

]

oz 8 w(D) n s

Mrnlb) = =0y 21 DZM DI e 29
o w(D) O

4 =w 2 Bieas, 2 o

DeA:[h] deg(D)<(<[%]
=12

Inserting (4.3) into (4.7), we have

T ~
Nh,m(ﬂ) - CA(2) Jm([g]) % |D|HP|D(1+|P|)
<4
L2 u(D) deg(L)™
€a(2) DeAz[ b IDITpp(+[P])
m 2g+2 M1 eg(L)® i
(4.8) 2mgPot Z Jm(a) Z uD) deg(L) ++0(9"q >

- Ca(2) a—1 De A+ |D|HP\D(1+|P|)

<)

Then, from (4.8), by using Lemma 4.5, we get that

_2amgretr 1(D)
Nom) = =2 G5~ (3) 2 BT 0+ 17D
| 2 u(D) deg(L)™
6@ 2 DITppi+ 7]
m,,2g m+1 e 30
(4.9) 2"g0 a) D)des(L)" 5 (gmg%).

AE) \DIHP|D (1+1P)

a=1 DeA+

439

Q).

).
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Finally, by (4.9) and (4.6), we get
2mq2g+2 A G(m)(l)
s (W + )

amg20+2 UL G@(1 m 39
_Q;](Q)ij(a)(—ln(q))a—'_o(g q?).

Lemma 4.8. For h € {g— 1,9}, we have

Z Y Y i=¢ 1)g2o 51543 £ 0(gg ).

EA+ MEBQ+1 uEF
(M,L)=

Nh,m(ﬂ) =

a=1

w\:‘

Proof. Put

Lom(p) =q % oY

=0 L€A+ MeBy+1 ueFm
(M,L)=1

o~

Since #Fa; = ®(M), we have

_h#1
Lpm(p) =q 2 Z
=0

(SE

=0 Leaf Mea},
(N,L)=1
Then, by using (4.1), we can get
9g—b 43 3]
g2 ¢ u(D) s
Lpm(p) = "——75—) 4 +0(¢q?)
‘ w2 = Dent |DITTpp(1+ [P])
QQ,LLJ’,E D i
(4.10) :7(1( (22)2 DHM( (1)+P|) > ¢ +0(q?
B bear P|D deg(D)<<[%]
slg
Since
" = Ca(2) (q[g] - qdeg(D)‘l) :
deg(D)<e<[4]
we have
hj_ni3 (D)
Lom(p) = P84T Y
’ D 1+ |P
peat, |D[T1pp(1+ [P])
<[3]
D) 3g
4.11 —PE: D) o),
(1) ’ 2 parey o)

+
DA

).
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By Lemma 4.5 and (4.6), we have

D _g
(4.12) DE%: IDIHPMi(l)HPI) = G(1) +0(q%).
<(4

We also have

D 1
pear ppA+IPDI =5 5= 1D
<14
By inserting (4.12) and (4.13) into (4.11), we get
Lim(p) = G E=543 4 O(gq 7). O

5. Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1.

5.1. p-th derivative of L(s, x,) for u € gy,
Let u € Zy41. Then L(s, x,) can be represented as
L(s,xu) = > XulOIFT 417299 > xa(HIFFP
feA;g f€A;g71
Lemma 5.1. Let u € Z,41. For any integer 1 > 0, we have

L(#)(S’XU) _ 4 I —ns
W = Z(—”) An(u)g

n=0
—1

1 g
o3 (Y S
m=0 n

=0

where Ap(u) =3 ¢cp+ Xu(f). In particular, we also have

L(“)(%,Xu) B 9

(Ing)» o
Iz " g—1
1 —2g)Hm ™A, (u)gE .
6.1 £ 32 (n) 20 s
Proof. See the proof of Lemma 5.1 in [3]. O

Write

h
St =Y 1" E > Y xalf)
n=0

Feat u€lygiq
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for h € {g— 1,9} and m € {0,1,...,u}. Then, by (5.1), we can write

3 M_( s, +Z( ) PmSe (),

ez, (ng)

5.2. Averaging Sp (1)
In this subsection we obtain an asymptotic formula of Sy, (1).

Proposition 5.2. For he€ {g— 1,9} and m € {0,1,...,u}, we have

LA ny 4 G
CA(2) (G(l)‘]m([2]) + (_ lnq)’”)

2m+1q2g+1 m+1 G(a)(l) 0 3
L N G (@) o(gm2t ).
A0 :lj ( )(—lnq)a (9"22¢29)

a

Shom(1) =
(5.2)

Proof. We split the sum over f with f being a perfect square of a polynomial
or not. Then we can write

Shom(1) = Sp () + Sp (1) 20,

where
h
(5.3) Spmmo=>_1"q% Y > xulf)
n=0 feat u€lypa
=0
and

h
(5.4) Sp ol Z YO )

feAt uelya
f0

For the contribution of non-squares, from (5.4) by using Lemma 4.1, we have

h
Sl <Y gt Y| T xu(f)‘

n=0 feaf 'u€lgn
0
h
(5.5) < g¢° anq_% Z 2% < g™2%¢39.
n=0 fEA::

Now, we consider the contribution of squares. We can write

Sim D*an D0 D xulh)

feaf s=0uels g1
=0
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Note that Zig g4+1) = Ggy1. For 1 < s < gand M € By, let Zpy = {v+ F :
ve Fyand F € Ggris}. Then Z(5 441 is the disjoint union of the Zy’s,
where M runs over B,. Hence, we see that

3

Stmlio = 0" 3 3 { }

LeAf FEGg41

<\

(3]

e Y3 S S {5

L= Leaf s=1 MeBs u€ly

] (2] g

(5.6) 25’” TS eomet Y Y Y Y L
£=0

LeAf FeGgia LeAf s=1 (Jl\\;i?’gluGIM

(S

[NIE
vl

<\

Since #Gg41 = ﬁqgﬂ, we have

J

(5.7) 2£m YN 1=

= LEA+ FeGgia £=0

>

[

[N~

qg+ ]

(20™ < g™

We also have, by Lemma 4.6, that
]

D ID DI OF

[N

=0 Lea} s=1 MEeB, uely
(M,L)=1
_ 2t 0 G“’”U))
= oy (Cwm i+ Fg
2m+1q29+1 m+1 ' G(a)(l) m 3751
(58) ol X @) g 0",

a=1

By inserting (5.7) and (5.8) into (5.6), we get

m+1.,2g+1 (m)

Ca(2) (—Ing)™
N A G@(1) 54
5.9 im(a) ———= 4+ O0(g™q2).
(5.9) AR a:13 ()(qnq)a (9"q?)
Finally, combining (5.5) and (5.9), we obtain the result. O

5.3. Completing the proof
Recall that

(W) (L "
(5.10) Z M = (=1)*8 . (n) + Z ( > TSy 1 (1)

uEIg+1 (ln q)u m=0
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By (5.9) with h = g and m = y, we have that
—1)montlg29+1

ST (6 +
(—2)rtlgo+1 ptl . G(a)(l)

oo M Tmge

(1
(C1)82, () = ) )

—Ing)*

(5.11) + O(g “22q2g)

w2 I
We also, by (5.9), have that
> (1) 20yl
m=0
bl st <l 070 Vi o1y G
Gl 2 () o (e )
2u+1 2g+1 _H w\, uimm‘f‘l. . G(a)(l) hod g
312) Tl S (1) m0r 3 @) e + Ol 2 )

By inserting (5.11) and (5.12) into (5.10), we complete the proof.

6. Proof of Theorem 3.2

In this section we give a proof of Theorem 3.2.

6.1. p-th derivative of L(s, x.) for u € Fgiq
For uw € Fyi1, L(s, xu) can be represented as

L(s, xu) = Z WO —a” (g+1)s Z Xu(f)

feASg feA;q

+qU95(s) Y NI =q76(s) Y xulf),

f€A<g 1 f€A<g 1

where §(s) = 1= ;s -

Lemma 6.1. Let u € Fgqq. For any integer yu > 0, we have

L “) (s X
u 'U‘A —ns _ 1 —(g+1) A
(—Ing)® Zn (9+ Z

+ q(l—QS)g Z ILL! (29)115 (3) gz:(—’l’b)cAn(u)qn(S_l)

1! _ b
et alble! (—1ng) oy

oy (M) IS g,

m=0 In q) n=0
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where Ap(u) =3 ¢cp+ Xu(f). In particular, we also have

L(u) Xu) g
Qa u " _n " _7
(CIng)* Z”’A *—(g+DMq ;An(U)
—1
! 29 a§(b (%) ] c -5
+ Z alble!  (—1Ingq)b Z(—n) Ap(u)g™?
a+b+c=p n=0
N ATELEOISY
6.1 gt o
o o5 () g
Proof. See the proof of Lemma 6.1 in [3]. O
Write
Siom 1 Z”WZ 2 )
feAl u€Fgt
and

h
W=¢c"T3 5 3

n=0 fEAi UEFg41

for h € {g— 1,9} and m € {0,1,...,u}. Then, by (6.1), we can write

(1)
> LX) (27xu):3;”,“(#)—(9+1)”Tg(u)

—1)eu! (2 )a(;(b)(l)
+ Z (a!b)!ctl Eq—hrlq)b2

‘S;— 1,(:(:“‘)
a+b+c*/_t

6.2. Averaging Sj, ., (1)

In this subsection we obtain an asymptotic formula of Sy, , (u).

Proposition 6.2. For h € {g— 1,9} and m € {0,1,...,u}, we have

mgPet? (m)
m2g+2 m+1 (a) L
(62 - Z jm(a)gln(ql))a +0(g™22q29).

Ca(2)

a=1
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Proof. We can write S, . (1) = Sy, ,,()o + Sp, . (1) 20, Where

(63) Sh m D = Z n"q" Z Z Xu(f)

feAI u€Fg11

F=0
and
h
(6.4) Shawzm=> 1" %> > xulf
n=0 feAt u€F 11

f#0
For the contribution of non-squares, from (6.4) by using Lemma 4.2, we have

h
Stnscl <> nmaE 3| 5 )
n=0

feat u€Fgi
f#0

(6.5) <Y nmgE Y 2% « gmaighe,

fead
Now, we consider the contribution of square parts. For each M € By, let Far
be the set of rational functions v € F441 whose denominator is M. Then Fg14
is a disjoint union of the Fj;’s, where M runs over By, 1. Hence, we can write

h
Shmo=>_n"¢F Y > > xalf)
n=0 feAI MeBy+1 ueFm
f=0
(5]
SCIZED vl b op!
(= LEAZ JWEBq+1 ueEFp
(M,L)=

Then, by Lemma 4.7, we have

2mq2g+2 ( A G(m)(l) )
Si o =— (G Jn(2]) + ———=
h, (:LL)D CA(2) ( ) ([2]) (_ lnq)m
2mq2g+2 m+1 ) G(a)(l) 39
6.6 - — m(a)————=+ 0 mq 2 ),
(6.6) Lo 2 Jm ( )(An 2° (9"q?)
Finally, combining (6.5) and (6.6), we obtain the result. O

6.3. Averaging T (u)
In this subsection we obtain an asymptotic formula of T (u).

Proposition 6.3. For h € {g — 1,g}, we have

(6.7) Ti(w) = G -5+ 1 0(2% g

3q
2

7).
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Proof. We can write Ty, (1) = Tn(1)o + Tn (1) 20, where

(6.8) Th(wo =g~ ”“ZZ S xalf

n=0 fept ueFyp
f=0

(6.9) Tr(w)zo =q~ h+1zz > xulf

n=0 feAT u€F 41
f#0

For the contribution of non-squares, from (6.9) by using Lemma 4.2, we have

h
Tl <o B S| S Xu<f>|

n=0 rept ' u€F 41
20

h
(6.10) <@ T YN 2% «ofgde,

n=0 fEA;'{

Now, we consider the contribution of square parts. Since Fy1 is a disjoint
union of the Fjs’s, where M runs over By41, we can write

(3]

Te=rFY Y Y Y an=r Y Y Y Y

n= OfeAjL’ MEBH+1 ueEF = LEA+ MEBQ+1 u€Fnr
f=0 (M,L)=1

M=

Then, by Lemma 4.8, we have
(6.11) Tu(r)o = GPE754E 1+ 0(gg %),
Finally, combining (6.10) and (6.11), we obtain the result. O

6.4. Completing the proof
Recall that

(n) (1
> L5 x) =82, (1) = (g + )" Ty(p)

_ B
T (—Ing)

. (—1)°p! (29)“5“’)(5)5e

alble!  (—Ingq)® g—1.c(H)

a+b+c—u

p—m g(m) (1
(6.12) — Z ( )glflq)(Q)E—l(M)~
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By using (6.2), we have that

. _2KgPet? GW(1)
Sg () = EOR <G(1)J,L([‘2’]) + (—lnq)“)
B 2uq29+2 pt1 . G(a)(l) % 379
(6.13) A a:1]#(a)7(_lnq)a +0(g"2%¢7)
and
(—=1)°u! (29)"0"(3) .
Z alblc! (—lnq)b2 Sg-1.c(1)
a+b+c=p
o il (20" (-290() L GO
= CA(z) a+b+zc_u a'b'C' (_ In q)b (G(l)Jc([QQ]) + (_lnq)(’)
P Z w o (29)7(=2)6®(3) ol . G@ (1)

¢a(2) vl alble! (—Ingq)® P “(~Ing)e
(6.14) +O0(g"2%¢7).
By using (6.7), we also have
(6.15) (9+ D" T5(n) = G)(g + 1)!'q* BI85 4 O(g"28 4 F)
and

s u—mg(m)(l)
ny\9 2
= () g a0
go11 g1 3 oo p—mg(m) L 4 3a

(6.16) = G)PIT I Y <£‘1> g 2 (—lnq)7£2) +0(g"2%¢¥).

m=0

By inserting (6.13), (6.14), (6.15) and (6.16) into (6.12), we complete the proof.

7. Appendix: Non-maximal order case

In this appendix, we consider the case of non-maximal orders, as was done
in [1] in odd characteristic case. We use the same notations as in [7], with
minor changes.

Let D be the set of rational functions 25 € k such that M € A*, ged(D, M)
=1, 2 & p(k), sgn(D) = £ if deg(D) = 2deg(M) and 2 { deg(D) if deg(D) >
2deg(M), where sgn(D) denotes the leading coefficient of D. Define ~ on D
by

!/ /
DT araa D Do
Then ~ is an equivalence relation and let [(D,M)] be the equivalence class
containing %. Let

D,, = {[(D,M)]: M € A}, deg(D) < 2m},
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D' ={[(D,M)]: M € A}, deg(D) =2m},
Dya={[(D,M)]: M € Af, deg(D) = 2( +2d + 1}
and
D= | Diu
L+d=m—1
It is shown in [7] that
#D = #D'm = ¢*" —¢", #Dra=2(¢—1)¢*** and
#Dm = 2(¢*" 71 = ¢™7Y).
Note that ¢>™ — ¢™ is the number of monic polynomials of degree 2m which
is not a square. The reason for 2 in #D,, is as follows; Write D = AM? + B
with deg(B) < 2deg(M). 2 is the factor that whether the constant term of
A is contained in (k) or not, just like, when deg(D) is odd, whether sgn(D)
is a square or not in odd characteristic case. We also note that the element
[(D,M)] € Dy, (resp. D,,, resp. Dy;,) corresponds to monic nonsquare polyno-
mial M of degree 2m (resp. vM, M monic polynomial of degree 2m for v a

generator of Fy, resp. polynomial M of degree 2m — 1 with sgn(M) =1 or v)
in odd characteristic case.

Let )
D/M
on(D, M) = Z{ N }
NeAl
Then
L(s,x(p,m)) = ZUnDM ne.
Let
Smm= >, ou(D,M), S,.,= > ouD,M),
[(D,M)]E€Dm [(D,M)]€D’ 1,
Sé,d,n: Z on(D,M) and Sm,n: Z on(D, M).
(D,M)]€D¢.q [(D,M)]€Dm

It is shown in [7, Proposition 4.3, Fact 4.8 and Proposition 4.13] that
S = S = Smn =0, if n > 2m,

and, for n < 2m,

(7.1) S =q"(

(7.2) S:n,n =q"P(

,m) — ®(n,m) = &(3,2m) — &(n,m),

%
5,m) — (=1)"®(n,m) = &(%,2m) — (—1)”<I>(n m),

(7.3) Sean=2(q—1)g"™®(3,0) and S, =2(q ¢ Z (3,0
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where
qm ifa=0,

(7.4) ®(a,m) = % if a # 0, an integer,
0 if a is not an integer,

as defined in [7, Proposition 4.4] and [1, Proposition 2.2].
Remark 7.1. We note that Sy, ,, is equal to

Z Z X (),

MeAS, NeAL

o> xu()

MevyAf, Neat

and S}, ,, is equal to

in odd characteristic case [1, §4, §5]. Also one can see easily ([1, §3]) that S,
is equal to

2 3 Y (V) + 0ag™),
MeAY, | Neaf

where d,, is 1 or 0 according to n is even or odd.

Let B; be the jth Bernoulli number and ®(z, s, @) be the Lerch transcendent
function given by

0 n
z
B(z,5,0) =) =,
—(n+a)

and Li,(z) be the polylogarithm function given by

X _n
z
n=1 ne

Lemma 7.2 (Faulharber’s formula ([1], (2.5), (2.6), (2.7))). We have

m w

1 (n+1 _

nt = —— 1) ] Bym+ 17,
Sy D (e

=0 J
2m—1
> ntg¥ =~ (/G —p1,2m) + Li—yu(1/0)
n=1

and
2m—1 ’
(1) 0t = —q"®(—/g, —p,2m) + Li_(—/9)-
n=1

Note that there is a minor error in the formula (2.6) of [1].

Theorem 7.3. Let p be a positive integer. Then we have
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(i) Z L(“)( » X(D, M))

(D,M)]€D¢.q

262(2)16()511 2€+d+1z <u+1) By (l 4 d)ti=n

and

> L™ xoan)

(D,M)]€Dm

_ 9 (—21log q)* qm—l(qm —1) i(_l)n (M + 1) By (m — 1)M+1—”_

@)+ 1) Z n
(i) > LW xwan)
[(D,M)]€Dm,
(—2log )" log qQH 2 (u + 1> _
m B, (m — 1)#ti=n
RACITESE Z n(m—1)
—logq .
+ (CA(Q))CJ’” (¢"®(v/q: —p,2m) — Li_ (/7)) -
(iii) Z L(#)( » X(D, M))
(D,M)]eD’,
(—2log )" 2 (u + 1) -
m B, (m — 1)#ti-n
TG 1 Z n( )
—logg)* .., m .
+ CLBD o (map(— ,—p,2m) — Li ().
Ca(2)
Proof. Once we have the formulas for S, ,, S{nm and S“g,d’n, the computations

in [1, §3-5], can be applied to this case. We will prove the first formula for the
convenience of the reader. We have

> LW xipan)

[(D,M)]€D¢,q
2€+2d+1
= (=1)"(log ¢)* Z Seanntq
20+2d+1
=2(q — 1)(=1)*(log g)*q" Z (%, Hntg " (by (7.3))
_2( _1)( ) Iqu 2[+d§ ) b 74))
- G2 n* by

We get the result by Foulhaber’s formula. (I
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