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MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS

IN EVEN CHARACTERISTIC

Sunghan Bae and Hwanyup Jung

Abstract. For any positive integer µ, we compute the mean value of

the µ-th derivative of quadratic Dirichlet L-functions over the rational
function field Fq(t), where q is a power of 2.

1. Introduction

In a series of papers [1,2,5], Andrade studied the mean values of derivatives
of L-functions in function fields based on the use of the approximate functional
equation for function field L-functions developed by Andrade and Keating in [4].
These results can be seen as a function field version of moments of derivatives of
the Riemann zeta function as given by Ingham [11] which are further developed
by the work of Conrey [8], Gonek [10] and Conrey, Rubinstein and Snaith [9].

For any non-square polynomial D in Fq[t], where q is odd, let L(s, χD)
be the Dirichlet L-function associated to the quadratic character χD defined
by Jacobi symbol in Fq[t]. In [1], Andrade proved several mean values re-
sults for the derivatives of Dirichlet L-functions in function fields when the
average is taken over all discriminants, i.e., over all monic polynomials of a
prescribed degree in Fq[t]. For any integer µ ≥ 1, he gave an exact formula for∑
D L

(µ)( 1
2 , χD), where D runs over all non-square monic polynomials in Fq[t]

of given degree and L(µ)(s, χD) is the µ-th derivative of L(s, χD) ([1, Theorem
1.1, Theorem 1.2]). In [2], Andrade investigated the mean values of deriva-
tives of quadratic Dirichlet L-functions over function fields when the average is
taken over monic irreducible polynomials P in Fq[t]. He obtained asymptotic
formulas for

∑
P L
′( 1

2 , χP ) and
∑
P L
′′( 1

2 , χP ) as deg(P ) goes to infinity and q
fixed, where P runs over all monic irreducible polynomials of a prescribed de-
gree in Fq[t]. Let Hn denote the set of monic square-free polynomials of degree
n in Fq[t]. In [5], Andrade and Rajagopal studied the mean values of second
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derivatives of Dirichlet L-functions L(s, χD) at s = 1
2 . More precisely, they

gave an asymptotic formulas for
∑
D L
′′( 1

2 , χD), where D runs over H2g+1,
as g goes to infinity and q fixed ([5, Theorem 2.1]). Recently, Andrade and
Jung [3] extended the work of Andrade and Rajagopal to the mean values of
µ-th derivatives of Dirichlet L-functions L(s, χD) at s = 1

2 . They gave as-

ymptotic formulas for
∑
D L

(µ)( 1
2 , χD), where D runs over H2g+1 or H2g+2,

as g goes to infinity and q fixed ([3, Theorem 3.1, Theorem 3.2]). The aim of
this paper is to study the mean values of derivatives of Dirichlet L-functions
L(s, χµ) at s = 1

2 in even characteristic case. We give asymptotic formulas

for
∑
u∈Ig+1

L(µ)( 1
2 , χu) and

∑
D∈Fg+1

L(µ)( 1
2 , χu) as g goes to infinity and q

fixed (Theorem 3.1, Theorem 3.2), where Ig+1 and Fg+1 are the sets of ratio-
nal functions which play the roles of H2g+1 and H2g+2 in even characteristic,
respectively. In Appendix, we also consider the case of non-maximal orders, as
was done in [1] in odd characteristic case.

2. A short background on function fields

Let k = Fq(t) be the rational function field with a constant field Fq, where q
is a power of 2, and A = Fq[t]. We denote by A+ the set of monic polynomials in
A and by P the set of monic irreducible polynomials in A. Any monic irreducible
polynomial P ∈ P will be also called a prime polynomial throughout the paper.
For any positive integer n, let An = {f ∈ A : deg(f) = n} and A+

n = A+ ∩An,
Pn = P ∩ An.

The zeta function ζA(s) of A is defined to be the following infinite series:

(2.1) ζA(s) =
∑
f∈A+

1

|f |s
=
∏
P∈P

(
1− 1

|P |s

)−1
, Re(s) > 1,

where |f | = qdeg(f). It is well known that ζA(s) = 1
1−q1−s .

In this section, we recall some basic facts on quadratic function field in even
characteristic. For more details, we refer to [6, §2.2, §2.3].

2.1. Quadratic function field in even characteristic

Any separable quadratic extension K of k is of the form K = Ku = k(xu),
where xu is a zero of X2 + X + u = 0 for some u ∈ k. Fix an element
ξ ∈ Fq \ ℘(Fq), where ℘ : k → k is the additive homomorphism defined by
℘(x) = x2 + x. We say that u ∈ k is normalized if it is of the form

u =

m∑
i=1

ei∑
j=1

Qij

P 2j−1
i

+

n∑
`=1

α`T
2`−1 + α,(2.2)

where Pi ∈ P are distinct, Qij ∈ A with deg(Qij) < deg(Pi), Qiei 6= 0, α ∈
{0, ξ}, α` ∈ Fq and αn 6= 0 for n > 0. Let u ∈ k be normalized one as in
(2.2). The infinite prime (1/t) of k splits, is inert or ramified in Ku according
as n = 0 and α = 0, n = 0 and α = ξ, or n > 0. Then the field Ku is called
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real, inert imaginary, or ramified imaginary, respectively. The discriminant Du

of Ku is given by

Du =

{∏m
i=1 P

2ei
i if n = 0,∏m

i=1 P
2ei
i · (1/t)2n if n > 0,

and the genus gu of Ku is given by

gu =
1

2
deg(Du)− 1.(2.3)

For each M ∈ A+, write r(M) =
∏
P |M P and t(M) = M ·r(M). For P ∈ P,

let νP be the normalized valuation at P , that is, νP (M) = e, where P e‖M .
Let B be the set of monic polynomials M such that νP (M) = 0 or odd for any
P ∈ P, that is, t(M) is a square, and C be the set of rational functions D

M ∈ k
such that D ∈ A,M ∈ B and deg(D) < deg(M). Also we let E be the set of
rational functions D

M ∈ C of the form

D

M
=
∑
P |M

`P∑
i=1

AP,i
P 2i−1 ,

where deg(AP,i) < deg(P ) for any P |M and for all 1 ≤ i ≤ `P = 1
2 (νP (M)+1).

Let F be the set of rational functions D
M ∈ E such that AP,`P 6= 0 for all P |M

and F ′ = {u+ ξ : u ∈ F}. For any positive integer n, let

Bn = {M ∈ B : deg(t(M)) = 2n} , Cn =
{
D
M ∈ C : M ∈ Bn

}
,

En = E ∩ Cn, Fn = F ∩ En, F ′n = {u+ ξ : u ∈ Fn} .

Under the correspondence u 7→ Ku, Fn (resp. F ′n) corresponds to the set of all
real (resp. inert imaginary) separable quadratic extensions Ku of k with genus
n− 1. For any positive integer s, let Gs be the set of polynomials F (T ) ∈ A of
the form

F (T ) = α+

s∑
i=1

αiT
2i−1, where α ∈ {0, ξ}, αi ∈ Fq and αs 6= 0.

Let F0 = {0}. For any integers r ≥ 0 and s ≥ 1, let I(r,s) = {u + F : u ∈
Fr, F ∈ Gs}. For any integer n ≥ 1, let In be the union of all I(r,s), where (r, s)
runs over all pairs of nonnegative integers such that s > 0 and r+s = n. Then,
under the correspondence u 7→ Ku, In corresponds to the set of all ramified
imaginary separable quadratic extensions Ku of k with genus n− 1.

We have that #Bn = qn, #En = q2n, #Fn = ζA(2)−1q2n and #In =
2ζA(2)−1q2n−1 (see [6, Lemma 2.3]). For each M ∈ B, let CM be the set of
rational functions u ∈ C whose denominator divides M , EM = E ∩ CM and
FM = F ∩CM . Note that En (resp. Fn) is the disjoint union of EM (resp. FM )

with M ∈ Bn. Let M̃ =
∏
P |M P (νP (M)+1)/2. We also note that #EM = |M̃ |

and #FM = Φ(M̃), where Φ(M̃) = #(A/M̃A)×.
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2.2. Hasse symbol and L-functions

For any u ∈ k whose denominator is not divisible by P ∈ P, the Hasse
symbol [u, P ) with values in F2 is defined by

[u, P ) =

{
0 if X2 +X ≡ u (modP ) is solvable in A,

1 otherwise.

For N ∈ A prime to the denominator of u, if N = sgn(N)
∏s
i=1 P

ei
i , where

sgn(N) is the leading coefficient of N and Pi ∈ P are distinct and ei ≥ 1, we
define [u,N) to be

∑s
i=1 ei[u, Pi).

For u ∈ k and 0 6= N ∈ A, we also define the quadratic symbol:{ u
N

}
=

{
(−1)[u,N) if N is prime to the denominator of u,

0 otherwise.

This symbol is clearly additive in its first variable, and multiplicative in the
second variable.

For the field Ku, we associate a character χu on A+ which is defined by
χu(f) = {uf }, and let L(s, χu) be the L-function associated to the character

χu: for s ∈ C with Re(s) ≥ 1,

L(s, χu) :=
∑
f∈A+

χu(f)

|f |s
=
∏
P∈P

(
1− χu(P )

|P |s

)−1
.

It is well known that L(s, χu) is a polynomial in q−s. Letting z = q−s, write
L(z, χu) = L(s, χu). Then, L(z, χu) is a polynomial in z of degree 2gu + 1

2 (1 +

(−1)ε(u)), where ε(u) = 1 if Ku is ramified imaginary and ε(u) = 0 otherwise.
Also we have that L(z, χu) has a “trivial” zero at z = 1 (resp. z = −1) if and
only if Ku is real (resp. inert imaginary), so we can define the “completed”
L-function as

(2.4) L∗(z, χu) =


L(z, χu) if Ku is ramified imaginary,

(1− z)−1L(z, χu) if Ku is real,

(1 + z)−1L(z, χu) if Ku is inert imaginary,

which is a polynomial of even degree 2gu satisfying the functional equation

(2.5) L∗(z, χu) = (qz2)guL∗
(

1

qz
, χu

)
.

3. Statement of results

Let µ be a positive integer. Let L(µ)(s, χu) be the µ-th derivative of L(s, χu).
For any integer n ≥ 0, let Jµ(n) be the sum of the µ-th powers of the first n
positive integers, i.e., Jµ(n) =

∑n
`=1 `

µ. Faulhaber’s formula tell us that Jµ(n)
can be rewritten as a polynomial in n of degree µ+ 1 with zero constant term,
that is, Jµ(n) =

∑µ+1
m=1 jµ(m)nm.



MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS 435

Let

G(s) =
∑
L∈A+

µ(L)

|L|s
∏
P |L(1 + |P |)

,

where µ(L) is the Möbius function for polynomials. So for any integer m ≥ 0,
we have

G(m)(s)

(− ln q)m
=
∑
L∈A+

µ(L) deg(L)m

|L|s
∏
P |L(1 + |P |)

.(3.1)

We are now ready to state two of the main results of this paper. The first
theorem is the mean values of derivatives of Dirichlet L-functions associated to
the imaginary quadratic function field Ku with u ∈ Ig+1.

Theorem 3.1. Let µ be a fixed positive integer and q be a fixed power of 2.
Assume that q > 2. Then we have∑

u∈Ig+1

L(µ)( 1
2 , χu)

(ln q)µ

=
(−1)µ2µ+1q2g+1

ζA(2)

(
G(1)Jµ([ g2 ]) +

G(µ)(1)

(− ln q)µ

)
+

(−2)µ+1q2g+1

ζA(2)

µ+1∑
a=1

jµ(a)
G(a)(1)

(− ln q)a

+
2µ+1q2g+1

ζA(2)

µ∑
m=0

(
µ

m

)
(−g)µ−m

(
G(1)Jm([ g−12 ]) +

G(m)(1)

(− ln q)m

)

− 2µ+1q2g+1

ζA(2)

µ∑
m=0

(
µ

m

)
(−g)µ−m

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gµ2

g
2 q

3
2 g).

We remark that the main term in Theorem 3.1 is two times of the one in
[3, Theorem 3.1] since under the correspond D 7→ k(

√
D), H2g+1 ∪ γH2g+1

corresponds to the set of all ramified imaginary separable quadratic extensions
K of k with genus g in odd characteristic case, where γ is any non-square
element of F∗q .

The second theorem is the mean values of derivatives of Dirichlet L-functions
associated to the real quadratic function field Ku with u ∈ Fg+1.

Theorem 3.2. Let µ be a fixed positive integer and q be a fixed power of 2.
Assume that q > 2. Then we have∑

u∈Fg+1

L(µ)( 1
2 , χu)

(− ln q)µ

=
2µq2g+2

ζA(2)

(
G(1)Jµ([ g2 ]) +

G(µ)(1)

(− ln q)µ

)
− 2µq2g+2

ζA(2)

µ+1∑
a=1

jµ(a)
G(a)(1)

(− ln q)a
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−G(1)(g + 1)µq2g+[ g2 ]−
g
2+

3
2 −G(1)q2g+[ g−1

2 ]− g−1
2 + 3

2

µ∑
m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m

+
q2g+2

ζA(2)

∑
a+b+c=µ

µ!

a!b!c!

(2g)a(−2)cδ(b)( 1
2 )

(− ln q)b

(
G(1)Jc([

g−1
2 ]) +

G(c)(1)

(− ln q)c

)

− q2g+2

ζA(2)

∑
a+b+c=µ

µ!

a!b!c!

(2g)a(−2)cδ(b)( 1
2 )

(− ln q)b

c+1∑
a=1

jc(a)
G(a)(1)

(− ln q)a
+O(gµ2

g
2 q

3g
2 ),

where δ(s) = 1−q−s

1−qs−1 .

4. Main tools

In this section we present a few auxiliary results that will be used in the
proof of the main theorems.

Lemma 4.1. For any f ∈ A+
n with n ≤ g, which is not a perfect square, we

have ∑
u∈Ig+1

{
u

f

}
� 2

n
2 gqg.

Proof. This is Proposition 3.20 in [6]. �

Lemma 4.2. Let n be a positive integer. For any f ∈ A+
d , which is not a

perfect square, we have ∑
u∈Fn

{
u

f

}
� 2

d
2 qn.

Proof. This is Proposition 3.15 in [6]. �

Lemma 4.3. Let L ∈ A+. Given any ε > 0, we have∑
f∈A+

n

(f,L)=1

Φ(f) =
q2n

ζA(2)

∏
P |L

(1 + |P |−1)−1 +O
(
q(1+ε)n

)
.

Proof. This is Lemma 3.3 in [6]. �

Applying Lemma 4.3 with ε = 1
2 , we have the following corollary.

Corollary 4.4. We have∑
L∈A+

`

∑
f∈A+

n

(f,L)=1

Φ(f) =
q2n+`

ζA(2)

∑
D∈A+

≤`

µ(D)

|D|
∏
P |D(1 + |P |)

+O
(
q

3n
2 +`

)
.(4.1)
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Lemma 4.5. Let m ≥ 0 be an integer. Then we have∑
L∈A+

deg(L)>[ g2 ]

µ(L) deg(L)m

|L|
∏
P |L(1 + |P |)

= O(gmq−
g
2 ).

Proof. This is Lemma 3.4 in [5]. �

Lemma 4.6. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}, we have

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

g∑
s=1

∑
M∈Bs

(M,L)=1

∑
u∈IM

1

=
2m+1q2g+1

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).

Proof. Put

Mh,m(µ) =

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

g∑
s=1

∑
M∈Bs

(M,L)=1

∑
u∈IM

1.

Since #IM = 2
ζA(2)

qg+1−sΦ(M̃), we have

Mh,m(µ) =
2m+1qg+1

ζA(2)

[h2 ]∑
`=0

`mq−`
g∑
s=1

q−s
∑
L∈A+

`

∑
M̃∈A+

s

(M̃,L)=1

Φ(M̃).

Then, by using (4.1), we can get

Mh,m(µ) =
2m+1q2g+1

ζA(2)

[h2 ]∑
`=0

`m
∑

D∈A+
≤`

µ(D)

|D|
∏
P |D(1 + |P |)

+O(gmq
3g
2 )

=
2m+1q2g+1

ζA(2)

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

∑
deg(D)≤`≤[h2 ]

`m +O(gmq
3g
2 ).(4.2)

For integer m ≥ 0, recall that Jm(n) =
∑n
`=1 `

m, which is a polynomial in n of

degree m + 1 with zero constant term. Write Jm(n) =
∑m+1
a=1 jm(a)na. Then

we have ∑
deg(L)≤`≤[h2 ]

`m = Jm([h2 ]) + deg(L)m −
m+1∑
a=1

jm(a) deg(L)a.(4.3)
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Inserting (4.3) into (4.2), we have

Mh,m(µ) =
2m+1q2g+1

ζA(2)
Jm([h2 ])

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

+
2m+1q2g+1

ζA(2)

∑
D∈A+

≤[h
2
]

µ(D) deg(L)m

|D|
∏
P |D(1 + |P |)

− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
∑

D∈A+

≤[h
2
]

µ(D) deg(L)a

|D|
∏
P |D(1 + |P |)

+O(gmq
3g
2 ).(4.4)

Then, from (4.4), by using Lemma 4.5, we get that

Mh,m(µ) =
2m+1q2g+1

ζA(2)
Jm([h2 ])

∑
D∈A+

µ(D)

|D|
∏
P |D(1 + |P |)

+
2m+1q2g+1

ζA(2)

∑
D∈A+

µ(D) deg(L)m

|D|
∏
P |D(1 + |P |)

− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
∑
D∈A+

µ(D) deg(L)a

|D|
∏
P |D(1 + |P |)

+O(gmq
3g
2 ).(4.5)

We also recall that for any integer n ≥ 0, we have

G(n)(s)

(− ln q)n
=
∑
D∈A+

µ(D) deg(D)n

|D|s
∏
P |D(1 + |P |)

.(4.6)

Finally, by (4.5) and (4.6), we get

Mh,m(µ) =
2m+1q2g+1

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).

�

Lemma 4.7. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}, we have

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1 =
2mq2g+2

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)

−2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).
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Proof. Put

Nh,m(µ) =

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1.

Since #FM = Φ(M̃), we have

Nh,m(µ) =

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
M̃∈A+

g+1

(M̃,L)=1

Φ(M̃).

Then, by using (4.1), we can get

Nh,m(µ) =
2mq2g+2

ζA(2)

[h2 ]∑
`=0

`m
∑

D∈A+
≤`

µ(D)

|D|
∏
P |D(1 + |P |)

+O(gmq
3g
2 )

=
2mq2g+2

ζA(2)

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

∑
deg(D)≤`≤[h2 ]

`m +O(gmq
3g
2 ).(4.7)

Inserting (4.3) into (4.7), we have

Nh,m(µ) =
2mq2g+2

ζA(2)
Jm([h2 ])

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

+
2mq2g+2

ζA(2)

∑
D∈A+

≤[h
2
]

µ(D) deg(L)m

|D|
∏
P |D(1 + |P |)

− 2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
∑

D∈A+

≤[h
2
]

µ(D) deg(L)a

|D|
∏
P |D(1 + |P |)

+ +O(gmq
3g
2 ).(4.8)

Then, from (4.8), by using Lemma 4.5, we get that

Nh,m(µ) =
2mq2g+2

ζA(2)
Jm([h2 ])

∑
D∈A+

µ(D)

|D|
∏
P |D(1 + |P |)

+
2mq2g+2

ζA(2)

∑
D∈A+

µ(D) deg(L)m

|D|
∏
P |D(1 + |P |)

− 2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
∑
D∈A+

µ(D) deg(L)a

|D|
∏
P |D(1 + |P |)

+O(gmq
3g
2 ).(4.9)
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Finally, by (4.9) and (4.6), we get

Nh,m(µ) =
2mq2g+2

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).

�

Lemma 4.8. For h ∈ {g − 1, g}, we have

q−
h+1
2

[h2 ]∑
`=0

∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1 = G(1)q2g+[h2 ]−
h
2 +

3
2 +O(gq

3g
2 ).

Proof. Put

Lh,m(µ) = q−
h+1
2

[h2 ]∑
`=0

∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1.

Since #FM = Φ(M̃), we have

Lh,m(µ) = q−
h+1
2

[h2 ]∑
`=0

∑
L∈A+

`

∑
M̃∈A+

g+1

(M̃,L)=1

Φ(M̃).

Then, by using (4.1), we can get

Lh,m(µ) =
q2g−

h
2 +

3
2

ζA(2)

[h2 ]∑
`=0

q`
∑

D∈A+
≤`

µ(D)

|D|
∏
P |D(1 + |P |)

+O(q
3g
2 )

=
q2g−

h
2 +

3
2

ζA(2)

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

∑
deg(D)≤`≤[h2 ]

q` +O(q
3g
2 ).(4.10)

Since ∑
deg(D)≤`≤[h2 ]

q` = ζA(2)
(
q[

h
2 ] − qdeg(D)−1

)
,

we have

Lh,m(µ) = q2g+[h2 ]−
h
2 +

3
2

∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

− q2g−h
2 +

1
2

∑
D∈A+

≤[h
2
]

µ(D)∏
P |D(1 + |P |)

+O(q
3g
2 ).(4.11)
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By Lemma 4.5 and (4.6), we have∑
D∈A+

≤[h
2
]

µ(D)

|D|
∏
P |D(1 + |P |)

= G(1) +O(q−
g
2 ).(4.12)

We also have ∣∣∣∣ ∑
D∈A+

≤[h
2
]

µ(D)∏
P |D(1 + |P |)

∣∣∣∣� [h2 ]∑
`=0

∑
D∈H`

1

|D|
� g.(4.13)

By inserting (4.12) and (4.13) into (4.11), we get

Lh,m(µ) = G(1)q2g+[h2 ]−
h
2 +

3
2 +O(gq

3g
2 ). �

5. Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1.

5.1. µ-th derivative of L(s, χu) for u ∈ Ig+1

Let u ∈ Ig+1. Then L(s, χu) can be represented as

L(s, χu) =
∑
f∈A+

≤g

χu(f)|f |−s + q(1−2s)g
∑

f∈A+
≤g−1

χu(f)|f |s−1.

Lemma 5.1. Let u ∈ Ig+1. For any integer µ ≥ 0, we have

L(µ)(s, χu)

(ln q)µ
=

g∑
n=0

(−n)µAn(u)q−ns

+ q(1−2s)g
µ∑

m=0

(
µ

m

)
(−2g)µ−m

g−1∑
n=0

nmAn(u)q(s−1)n,

where An(u) =
∑
f∈A+

n
χu(f). In particular, we also have

L(µ)( 1
2 , χu)

(ln q)µ
=

g∑
n=0

(−n)µAn(u)q−
n
2

+

µ∑
m=0

(
µ

m

)
(−2g)µ−m

g−1∑
n=0

nmAn(u)q−
n
2 .(5.1)

Proof. See the proof of Lemma 5.1 in [3]. �

Write

Soh,m(µ) =

h∑
n=0

nmq−
n
2

∑
f∈A+

n

∑
u∈Ig+1

χu(f)
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for h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}. Then, by (5.1), we can write∑
u∈Ig+1

L(µ)( 1
2 , χu)

(ln q)µ
= (−1)µSog,µ(µ) +

µ∑
m=0

(
µ

m

)
(−2g)µ−mSog−1,m(µ).

5.2. Averaging So
h,m(µ)

In this subsection we obtain an asymptotic formula of Soh,m(µ).

Proposition 5.2. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}, we have

Soh,m(µ) =
2m+1q2g+1

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gm2

g
2 q

3
2 g).(5.2)

Proof. We split the sum over f with f being a perfect square of a polynomial
or not. Then we can write

Soh,m(µ) = Soh,m(µ)� + Soh,m(µ)6=�,

where

Soh,m(µ)� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f=�

∑
u∈Ig+1

χu(f)(5.3)

and

Soh,m(µ)6=� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f 6=�

∑
u∈Ig+1

χu(f).(5.4)

For the contribution of non-squares, from (5.4) by using Lemma 4.1, we have

|Soh,m(µ)6=�| �
h∑
n=0

nmq−
n
2

∑
f∈A+

n
f 6=�

∣∣∣∣ ∑
u∈Ig+1

χu(f)

∣∣∣∣
� gqg

h∑
n=0

nmq−
n
2

∑
f∈A+

n

2
n
2 � gm2

g
2 q

3
2 g.(5.5)

Now, we consider the contribution of squares. We can write

Soh,m(µ)� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f=�

g∑
s=0

∑
u∈I(s,g+1−s)

χu(f).
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Note that I(0,g+1) = Gg+1. For 1 ≤ s ≤ g and M ∈ Bs, let IM = {v + F :
v ∈ FM and F ∈ Gg+1−s}. Then I(s,g+1−s) is the disjoint union of the IM ’s,
where M runs over Br. Hence, we see that

Soh,m(µ)� =

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
F∈Gg+1

{
F

L2

}

+

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

g∑
s=1

∑
M∈Bs

∑
u∈IM

{ u

L2

}

=

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
F∈Gg+1

1+

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

g∑
s=1

∑
M∈Bs

(M,L)=1

∑
u∈IM

1.(5.6)

Since #Gg+1 = 2
ζA(2)

qg+1, we have

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
F∈Gg+1

1 =
2qg+1

ζA(2)

[h2 ]∑
`=0

(2`)m � gmqg.(5.7)

We also have, by Lemma 4.6, that

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

g∑
s=1

∑
M∈Bs

(M,L)=1

∑
u∈IM

1

=
2m+1q2g+1

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).(5.8)

By inserting (5.7) and (5.8) into (5.6), we get

Soh,m(µ)� =
2m+1q2g+1

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2m+1q2g+1

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).(5.9)

Finally, combining (5.5) and (5.9), we obtain the result. �

5.3. Completing the proof

Recall that∑
u∈Ig+1

L(µ)( 1
2 , χu)

(ln q)µ
= (−1)µSog,µ(µ) +

µ∑
m=0

(
µ

m

)
(−2g)µ−mSog−1,m(µ).(5.10)
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By (5.9) with h = g and m = µ, we have that

(−1)µSog,µ(µ) =
(−1)µ2µ+1q2g+1

ζA(2)

(
G(1)Jµ([ g2 ]) +

G(µ)(1)

(− ln q)µ

)
+

(−2)µ+1q2g+1

ζA(2)

µ+1∑
a=1

jµ(a)
G(a)(1)

(− ln q)a
+O(gµ2

g
2 q

3
2 g).(5.11)

We also, by (5.9), have that

µ∑
m=0

(
µ

m

)
(−2g)µ−mSog−1,m(µ)

=
2µ+1q2g+1

ζA(2)

µ∑
m=0

(
µ

m

)
(−g)µ−m

(
G(1)Jm([ g−12 ]) +

G(m)(1)

(− ln q)m

)

− 2µ+1q2g+1

ζA(2)

µ∑
m=0

(
µ

m

)
(−g)µ−m

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gµ2

g
2 q

3
2 g).(5.12)

By inserting (5.11) and (5.12) into (5.10), we complete the proof.

6. Proof of Theorem 3.2

In this section we give a proof of Theorem 3.2.

6.1. µ-th derivative of L(s, χu) for u ∈ Fg+1

For u ∈ Fg+1, L(s, χu) can be represented as

L(s, χu) =
∑
f∈A+

≤g

χu(f)|f |−s − q−(g+1)s
∑
f∈A+

≤g

χu(f)

+ q(1−2s)gδ(s)
∑

f∈A+
≤g−1

χu(f)|f |s−1 − q−gsδ(s)
∑

f∈A+
≤g−1

χu(f),

where δ(s) = 1−q−s

1−qs−1 .

Lemma 6.1. Let u ∈ Fg+1. For any integer µ ≥ 0, we have

L(µ)(s, χu)

(− ln q)µ
=

g∑
n=0

nµAn(u)q−ns − (g + 1)µq−(g+1)s

g∑
n=0

An(u)

+ q(1−2s)g
∑

a+b+c=µ

µ!

a!b!c!

(2g)aδ(b)(s)

(− ln q)b

g−1∑
n=0

(−n)cAn(u)qn(s−1)

− q−gs
µ∑

m=0

(
µ

m

)
gµ−mδ(m)(s)

(− ln q)m

g−1∑
n=0

An(u),
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where An(u) =
∑
f∈A+

n
χu(f). In particular, we also have

L(µ)( 1
2 , χu)

(− ln q)µ
=

g∑
n=0

nµAn(u)q−
n
2 − (g + 1)µq−

g+1
2

g∑
n=0

An(u)

+
∑

a+b+c=µ

µ!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b

g−1∑
n=0

(−n)cAn(u)q−
n
2

− q−
g
2

µ∑
m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m

g−1∑
n=0

An(u).(6.1)

Proof. See the proof of Lemma 6.1 in [3]. �

Write

Seh,m(µ) =

h∑
n=0

nmq−
n
2

∑
f∈A+

n

∑
u∈Fg+1

χu(f)

and

Th(µ) = q−
h+1
2

h∑
n=0

∑
f∈A+

n

∑
u∈Fg+1

χu(f)

for h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}. Then, by (6.1), we can write∑
u∈Fg+1

L(µ)( 1
2 , χu)

(− ln q)µ
= Seg,µ(µ)− (g + 1)µTg(µ)

+
∑

a+b+c=µ

(−1)cµ!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b
Seg−1,c(µ)

−
µ∑

m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m
Tg−1(µ).

6.2. Averaging Se
h,m(µ)

In this subsection we obtain an asymptotic formula of Seh,m(µ).

Proposition 6.2. For h ∈ {g − 1, g} and m ∈ {0, 1, . . . , µ}, we have

Seh,m(µ) =
2mq2g+2

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gm2

g
2 q

3
2 g).(6.2)
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Proof. We can write Seh,m(µ) = Seh,m(µ)� + Seh,m(µ) 6=�, where

Seh,m(µ)� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f=�

∑
u∈Fg+1

χu(f)(6.3)

and

Seh,m(µ)6=� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f 6=�

∑
u∈Fg+1

χu(f).(6.4)

For the contribution of non-squares, from (6.4) by using Lemma 4.2, we have

|Seh,m(µ) 6=�| �
h∑
n=0

nmq−
n
2

∑
f∈A+

n
f 6=�

∣∣∣∣ ∑
u∈Fg+1

χu(f)

∣∣∣∣
� qg

h∑
n=0

nmq−
n
2

∑
f∈A+

n

2
n
2 � gm2

g
2 q

3
2 g.(6.5)

Now, we consider the contribution of square parts. For each M ∈ Bg+1, let FM
be the set of rational functions u ∈ Fg+1 whose denominator is M . Then Fg+1

is a disjoint union of the FM ’s, where M runs over Bg+1. Hence, we can write

Seh,m(µ)� =

h∑
n=0

nmq−
n
2

∑
f∈A+

n
f=�

∑
M∈Bg+1

∑
u∈FM

χu(f)

=

[h2 ]∑
`=0

(2`)mq−`
∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1.

Then, by Lemma 4.7, we have

Seh,m(µ)� =
2mq2g+2

ζA(2)

(
G(1)Jm([h2 ]) +

G(m)(1)

(− ln q)m

)
− 2mq2g+2

ζA(2)

m+1∑
a=1

jm(a)
G(a)(1)

(− ln q)a
+O(gmq

3g
2 ).(6.6)

Finally, combining (6.5) and (6.6), we obtain the result. �

6.3. Averaging Th(µ)

In this subsection we obtain an asymptotic formula of Th(µ).

Proposition 6.3. For h ∈ {g − 1, g}, we have

Th(µ) = G(1)q2g+[h2 ]−
h
2 +

3
2 +O(2

g
2 q

3
2 g).(6.7)
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Proof. We can write Th(µ) = Th(µ)� + Th(µ)6=�, where

Th(µ)� = q−
h+1
2

h∑
n=0

∑
f∈A+

n
f=�

∑
u∈Fg+1

χu(f)(6.8)

and

Th(µ)6=� = q−
h+1
2

h∑
n=0

∑
f∈A+

n
f 6=�

∑
u∈Fg+1

χu(f).(6.9)

For the contribution of non-squares, from (6.9) by using Lemma 4.2, we have

|Th(µ)6=�| � q−
h+1
2

h∑
n=0

∑
f∈A+

n
f 6=�

∣∣∣∣ ∑
u∈Fg+1

χu(f)

∣∣∣∣
� qg−

h+1
2

h∑
n=0

∑
f∈A+

n

2
n
2 � 2

g
2 q

3
2 g.(6.10)

Now, we consider the contribution of square parts. Since Fg+1 is a disjoint
union of the FM ’s, where M runs over Bg+1, we can write

Th(µ)� =q−
h+1
2

h∑
n=0

∑
f∈A+

n
f=�

∑
M∈Bg+1

∑
u∈FM

χu(f)=q−
h+1
2

[h2 ]∑
`=0

∑
L∈A+

`

∑
M∈Bg+1

(M,L)=1

∑
u∈FM

1.

Then, by Lemma 4.8, we have

Th(r)� = G(1)q2g+[h2 ]−
h
2 +

3
2 +O(gq

3g
2 ).(6.11)

Finally, combining (6.10) and (6.11), we obtain the result. �

6.4. Completing the proof

Recall that∑
u∈Fg+1

L(µ)( 1
2 , χu)

(− ln q)µ
= Seg,µ(µ)− (g + 1)µTg(µ)

+
∑

a+b+c=µ

(−1)cµ!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b
Seg−1,c(µ)

−
µ∑

m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m
Tg−1(µ).(6.12)
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By using (6.2), we have that

Seg,µ(µ) =
2µq2g+2

ζA(2)

(
G(1)Jµ([ g2 ]) +

G(µ)(1)

(− ln q)µ

)
− 2µq2g+2

ζA(2)

µ+1∑
a=1

jµ(a)
G(a)(1)

(− ln q)a
+O(gµ2

g
2 q

3g
2 )(6.13)

and ∑
a+b+c=µ

(−1)cµ!

a!b!c!

(2g)aδ(b)( 1
2 )

(− ln q)b
Seg−1,c(µ)

=
q2g+2

ζA(2)

∑
a+b+c=µ

µ!

a!b!c!

(2g)a(−2)cδ(b)( 1
2 )

(− ln q)b

(
G(1)Jc([

g−1
2 ]) +

G(c)(1)

(− ln q)c

)

− q2g+2

ζA(2)

∑
a+b+c=µ

µ!

a!b!c!

(2g)a(−2)cδ(b)( 1
2 )

(− ln q)b

c+1∑
a=1

jc(a)
G(a)(1)

(− ln q)a

+O(gµ2
g
2 q

3g
2 ).(6.14)

By using (6.7), we also have

(g + 1)µTg(µ) = G(1)(g + 1)µq2g+[ g2 ]−
g
2+

3
2 +O(gµ2

g
2 q

3g
2 )(6.15)

and
µ∑

m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m
Tg−1(µ)

= G(1)q2g+[ g−1
2 ]− g−1

2 + 3
2

µ∑
m=0

(
µ

m

)
gµ−mδ(m)( 1

2 )

(− ln q)m
+O(gµ2

g
2 q

3g
2 ).(6.16)

By inserting (6.13), (6.14), (6.15) and (6.16) into (6.12), we complete the proof.

7. Appendix: Non-maximal order case

In this appendix, we consider the case of non-maximal orders, as was done
in [1] in odd characteristic case. We use the same notations as in [7], with
minor changes.

Let D be the set of rational functions D
M2 ∈ k such that M ∈ A+, gcd(D,M)

= 1, D
M2 6∈ ℘(k), sgn(D) = ξ if deg(D) = 2 deg(M) and 2 - deg(D) if deg(D) >

2 deg(M), where sgn(D) denotes the leading coefficient of D. Define ∼ on D
by

D

M2
∼ D′

M ′2
if M = M ′ and

D

M2
+

D′

M ′2
∈ ℘(k).

Then ∼ is an equivalence relation and let [(D,M)] be the equivalence class
containing D

M2 . Let

Dm =
{

[(D,M)] : M ∈ A+
m, deg(D) < 2m

}
,
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D′m =
{

[(D,M)] : M ∈ A+
m, deg(D) = 2m

}
,

D̃`,d =
{

[(D,M)] : M ∈ A+
` , deg(D) = 2`+ 2d+ 1

}
and

D̃m =
⋃

`+d=m−1

D̃`,d.

It is shown in [7] that

#Dm = #D′m = q2m − qm, #D̃`,d = 2(q − 1)q2`+d and

#D̃m = 2(q2m−1 − qm−1).

Note that q2m − qm is the number of monic polynomials of degree 2m which
is not a square. The reason for 2 in #D̃m is as follows; Write D = AM2 + B
with deg(B) < 2 deg(M). 2 is the factor that whether the constant term of
A is contained in ℘(k) or not, just like, when deg(D) is odd, whether sgn(D)
is a square or not in odd characteristic case. We also note that the element
[(D,M)] ∈ Dm (resp. D′m, resp. D̃m) corresponds to monic nonsquare polyno-
mial M of degree 2m (resp. γM , M monic polynomial of degree 2m for γ a
generator of F∗q , resp. polynomial M of degree 2m− 1 with sgn(M) = 1 or γ)
in odd characteristic case.

Let

σn(D,M) =
∑
N∈A+

n

{
D/M2

N

}
.

Then

L(s, χ(D,M)) =
∑
n

σn(D,M)q−ns.

Let

Sm,n =
∑

[(D,M)]∈Dm

σn(D,M), S′m,n =
∑

[(D,M)]∈D′m

σn(D,M),

S̃`,d,n =
∑

[(D,M)]∈D̃`,d

σn(D,M) and S̃m,n =
∑

[(D,M)]∈D̃m

σn(D,M).

It is shown in [7, Proposition 4.3, Fact 4.8 and Proposition 4.13] that

Sm,n = S′m,n = S̃m,n = 0, if n ≥ 2m,

and, for n < 2m,

Sm,n = qmΦ(n2 ,m)− Φ(n,m) = Φ(n2 , 2m)− Φ(n,m),(7.1)

S′m,n = qmΦ(n2 ,m)− (−1)nΦ(n,m) = Φ(n2 , 2m)− (−1)nΦ(n,m),(7.2)

S̃`,d,n = 2(q − 1)q`+dΦ(n2 , `) and S̃m,n = 2(q − 1)qm−1
m−1∑
`=0

Φ(n2 , `),(7.3)
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where

Φ(a,m) =


qm if a = 0,
qm+a

ζA(2)
if a 6= 0, an integer,

0 if a is not an integer,

(7.4)

as defined in [7, Proposition 4.4] and [1, Proposition 2.2].

Remark 7.1. We note that Sm,n is equal to∑
M∈A+

2m

∑
N∈A+

n

χM (N),

and S′m,n is equal to ∑
M∈γA+

2m

∑
N∈A+

n

χM (N)

in odd characteristic case [1, §4, §5]. Also one can see easily ([1, §3]) that S̃m,n
is equal to

2
∑

M∈A+
2m−1

∑
N∈A+

n

χM (N) +O(δnq
m),

where δn is 1 or 0 according to n is even or odd.

Let Bj be the jth Bernoulli number and Φ(z, s, α) be the Lerch transcendent
function given by

Φ(z, s, α) =

∞∑
n=0

zn

(n+ α)s
,

and Lis(z) be the polylogarithm function given by

Lis(z) =

∞∑
n=1

zn

ns
.

Lemma 7.2 (Faulharber’s formula ([1], (2.5), (2.6), (2.7))). We have

m∑
n=1

nµ =
1

µ+ 1

µ∑
j=0

(−1)j
(
µ+ 1

j

)
Bjm

µ+1−j ,

2m−1∑
n=1

nµq
n
2 = −qmΦ(

√
q,−µ, 2m) + Li−µ(

√
q)

and
2m−1∑
n=1

(−1)nnµq
n
2 = −qmΦ(−√q,−µ, 2m) + Li−µ(−√q).

Note that there is a minor error in the formula (2.6) of [1].

Theorem 7.3. Let µ be a positive integer. Then we have
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(i)
∑

[(D,M)]∈D̃`,d

L(µ)( 1
2 , χ(D,M))

= 2
(−2 log q)µ

ζA(2)2(µ+ 1)
q2`+d+1

µ∑
n=0

(−1)n
(
µ+ 1

n

)
Bn(`+ d)µ+1−n

and ∑
[(D,M)]∈D̃m

L(µ)( 1
2 , χ(D,M))

= 2
(−2 log q)µ

ζA(2)(µ+ 1)
qm−1(qm − 1)

µ∑
n=0

(−1)n
(
µ+ 1

n

)
Bn(m− 1)µ+1−n.

(ii)
∑

[(D,M)]∈Dm

L(µ)( 1
2 , χ(D,M))

=
(−2 log q)µ

ζA(2)(µ+ 1)
q2m

µ∑
n=0

(−1)n
(
µ+ 1

n

)
Bn(m− 1)µ+1−n

+
(− log q)µ

ζA(2)
qm (qmΦ(

√
q,−µ, 2m)− Li−µ(

√
q)) .

(iii)
∑

[(D,M)]∈D′m

L(µ)( 1
2 , χ(D,M))

=
(−2 log q)µ

ζA(2)(µ+ 1)
q2m

µ∑
n=0

(−1)n
(
µ+ 1

n

)
Bn(m− 1)µ+1−n

+
(− log q)µ

ζA(2)
qm (qmΦ(−√q,−µ, 2m)− Li−µ(−√q)) .

Proof. Once we have the formulas for Sm,n, S′m,n and S̃`,d,n, the computations
in [1, §3-5], can be applied to this case. We will prove the first formula for the
convenience of the reader. We have∑

[(D,M)]∈D̃`,d

L(µ)( 1
2 , χ(D,M))

= (−1)µ(log q)µ
2`+2d+1∑
n=0

S̃`,d,nn
µq−n/2

= 2(q − 1)(−1)µ(log q)µq`+d
2`+2d+1∑
n=0

Φ(n2 , `)n
µq−n (by (7.3))

= 2(q − 1)
(−1)µ(log q)µ

ζA(2)
q2`+d

`+d∑
n=1

(2n)µ (by (7.4)).

We get the result by Foulhaber’s formula. �
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