MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN EVEN CHARACTERISTIC

Sunghan Bae and Hwanyup Jung

Abstract

For any positive integer μ, we compute the mean value of the μ-th derivative of quadratic Dirichlet L-functions over the rational function field $\mathbb{F}_{q}(t)$, where q is a power of 2

1. Introduction

In a series of papers $[1,2,5]$, Andrade studied the mean values of derivatives of L-functions in function fields based on the use of the approximate functional equation for function field L-functions developed by Andrade and Keating in [4]. These results can be seen as a function field version of moments of derivatives of the Riemann zeta function as given by Ingham [11] which are further developed by the work of Conrey [8], Gonek [10] and Conrey, Rubinstein and Snaith [9].

For any non-square polynomial D in $\mathbb{F}_{q}[t]$, where q is odd, let $L\left(s, \chi_{D}\right)$ be the Dirichlet L-function associated to the quadratic character χ_{D} defined by Jacobi symbol in $\mathbb{F}_{q}[t]$. In [1], Andrade proved several mean values results for the derivatives of Dirichlet L-functions in function fields when the average is taken over all discriminants, i.e., over all monic polynomials of a prescribed degree in $\mathbb{F}_{q}[t]$. For any integer $\mu \geq 1$, he gave an exact formula for $\sum_{D} L^{(\mu)}\left(\frac{1}{2}, \chi_{D}\right)$, where D runs over all non-square monic polynomials in $\mathbb{F}_{q}[t]$ of given degree and $L^{(\mu)}\left(s, \chi_{D}\right)$ is the μ-th derivative of $L\left(s, \chi_{D}\right)$ ($[1$, Theorem 1.1, Theorem 1.2]). In [2], Andrade investigated the mean values of derivatives of quadratic Dirichlet L-functions over function fields when the average is taken over monic irreducible polynomials P in $\mathbb{F}_{q}[t]$. He obtained asymptotic formulas for $\sum_{P} L^{\prime}\left(\frac{1}{2}, \chi_{P}\right)$ and $\sum_{P} L^{\prime \prime}\left(\frac{1}{2}, \chi_{P}\right)$ as $\operatorname{deg}(P)$ goes to infinity and q fixed, where P runs over all monic irreducible polynomials of a prescribed degree in $\mathbb{F}_{q}[t]$. Let \mathcal{H}_{n} denote the set of monic square-free polynomials of degree n in $\mathbb{F}_{q}[t]$. In [5], Andrade and Rajagopal studied the mean values of second

[^0]derivatives of Dirichlet L-functions $L\left(s, \chi_{D}\right)$ at $s=\frac{1}{2}$. More precisely, they gave an asymptotic formulas for $\sum_{D} L^{\prime \prime}\left(\frac{1}{2}, \chi_{D}\right)$, where D runs over $\mathcal{H}_{2 g+1}$, as g goes to infinity and q fixed ([5, Theorem 2.1]). Recently, Andrade and Jung [3] extended the work of Andrade and Rajagopal to the mean values of μ-th derivatives of Dirichlet L-functions $L\left(s, \chi_{D}\right)$ at $s=\frac{1}{2}$. They gave asymptotic formulas for $\sum_{D} L^{(\mu)}\left(\frac{1}{2}, \chi_{D}\right)$, where D runs over $\mathcal{H}_{2 g+1}$ or $\mathcal{H}_{2 g+2}$, as g goes to infinity and q fixed ([3, Theorem 3.1, Theorem 3.2]). The aim of this paper is to study the mean values of derivatives of Dirichlet L-functions $L\left(s, \chi_{\mu}\right)$ at $s=\frac{1}{2}$ in even characteristic case. We give asymptotic formulas for $\sum_{u \in \mathcal{I}_{g+1}} L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)$ and $\sum_{D \in \mathcal{F}_{g+1}} L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)$ as g goes to infinity and q fixed (Theorem 3.1, Theorem 3.2), where \mathcal{I}_{g+1} and \mathcal{F}_{g+1} are the sets of rational functions which play the roles of $\mathcal{H}_{2 g+1}$ and $\mathcal{H}_{2 g+2}$ in even characteristic, respectively. In Appendix, we also consider the case of non-maximal orders, as was done in [1] in odd characteristic case.

2. A short background on function fields

Let $k=\mathbb{F}_{q}(t)$ be the rational function field with a constant field \mathbb{F}_{q}, where q is a power of 2 , and $\mathbb{A}=\mathbb{F}_{q}[t]$. We denote by \mathbb{A}^{+}the set of monic polynomials in \mathbb{A} and by \mathbb{P} the set of monic irreducible polynomials in \mathbb{A}. Any monic irreducible polynomial $P \in \mathbb{P}$ will be also called a prime polynomial throughout the paper. For any positive integer n, let $\mathbb{A}_{n}=\{f \in \mathbb{A}: \operatorname{deg}(f)=n\}$ and $\mathbb{A}_{n}^{+}=\mathbb{A}^{+} \cap \mathbb{A}_{n}$, $\mathbb{P}_{n}=\mathbb{P} \cap \mathbb{A}_{n}$.

The zeta function $\zeta_{\mathbb{A}}(s)$ of \mathbb{A} is defined to be the following infinite series:

$$
\begin{equation*}
\zeta_{\mathbb{A}}(s)=\sum_{f \in \mathbb{A}^{+}} \frac{1}{|f|^{s}}=\prod_{P \in \mathbb{P}}\left(1-\frac{1}{|P|^{s}}\right)^{-1}, \quad \operatorname{Re}(s)>1 \tag{2.1}
\end{equation*}
$$

where $|f|=q^{\operatorname{deg}(f)}$. It is well known that $\zeta_{\mathbb{A}}(s)=\frac{1}{1-q^{1-s}}$.
In this section, we recall some basic facts on quadratic function field in even characteristic. For more details, we refer to $[6, \S 2.2, \S 2.3]$.

2.1. Quadratic function field in even characteristic

Any separable quadratic extension K of k is of the form $K=K_{u}=k\left(x_{u}\right)$, where x_{u} is a zero of $X^{2}+X+u=0$ for some $u \in k$. Fix an element $\xi \in \mathbb{F}_{q} \backslash \wp\left(\mathbb{F}_{q}\right)$, where $\wp: k \rightarrow k$ is the additive homomorphism defined by $\wp(x)=x^{2}+x$. We say that $u \in k$ is normalized if it is of the form

$$
\begin{equation*}
u=\sum_{i=1}^{m} \sum_{j=1}^{e_{i}} \frac{Q_{i j}}{P_{i}^{2 j-1}}+\sum_{\ell=1}^{n} \alpha_{\ell} T^{2 \ell-1}+\alpha \tag{2.2}
\end{equation*}
$$

where $P_{i} \in \mathbb{P}$ are distinct, $Q_{i j} \in \mathbb{A}$ with $\operatorname{deg}\left(Q_{i j}\right)<\operatorname{deg}\left(P_{i}\right), Q_{i e_{i}} \neq 0, \alpha \in$ $\{0, \xi\}, \alpha_{\ell} \in \mathbb{F}_{q}$ and $\alpha_{n} \neq 0$ for $n>0$. Let $u \in k$ be normalized one as in (2.2). The infinite prime ($1 / t$) of k splits, is inert or ramified in K_{u} according as $n=0$ and $\alpha=0, n=0$ and $\alpha=\xi$, or $n>0$. Then the field K_{u} is called
real, inert imaginary, or ramified imaginary, respectively. The discriminant D_{u} of K_{u} is given by

$$
D_{u}= \begin{cases}\prod_{i=1}^{m} P_{i}^{2 e_{i}} & \text { if } n=0 \\ \prod_{i=1}^{m} P_{i}^{2 e_{i}} \cdot(1 / t)^{2 n} & \text { if } n>0\end{cases}
$$

and the genus g_{u} of K_{u} is given by

$$
\begin{equation*}
g_{u}=\frac{1}{2} \operatorname{deg}\left(D_{u}\right)-1 . \tag{2.3}
\end{equation*}
$$

For each $M \in \mathbb{A}^{+}$, write $r(M)=\prod_{P \mid M} P$ and $t(M)=M \cdot r(M)$. For $P \in \mathbb{P}$, let ν_{P} be the normalized valuation at P, that is, $\nu_{P}(M)=e$, where $P^{e} \| M$. Let \mathcal{B} be the set of monic polynomials M such that $\nu_{P}(M)=0$ or odd for any $P \in \mathbb{P}$, that is, $t(M)$ is a square, and \mathcal{C} be the set of rational functions $\frac{D}{M} \in k$ such that $D \in \mathbb{A}, M \in \mathcal{B}$ and $\operatorname{deg}(D)<\operatorname{deg}(M)$. Also we let \mathcal{E} be the set of rational functions $\frac{D}{M} \in \mathcal{C}$ of the form

$$
\frac{D}{M}=\sum_{P \mid M} \sum_{i=1}^{\ell_{P}} \frac{A_{P, i}}{P^{2 i-1}},
$$

where $\operatorname{deg}\left(A_{P, i}\right)<\operatorname{deg}(P)$ for any $P \mid M$ and for all $1 \leq i \leq \ell_{P}=\frac{1}{2}\left(\nu_{P}(M)+1\right)$. Let \mathcal{F} be the set of rational functions $\frac{D}{M} \in \mathcal{E}$ such that $A_{P, \ell_{P}} \neq 0$ for all $P \mid M$ and $\mathcal{F}^{\prime}=\{u+\xi: u \in \mathcal{F}\}$. For any positive integer n, let

$$
\begin{aligned}
& \mathcal{B}_{n}=\{M \in \mathcal{B}: \operatorname{deg}(t(M))=2 n\}, \quad \mathcal{C}_{n}=\left\{\frac{D}{M} \in \mathcal{C}: M \in \mathcal{B}_{n}\right\}, \\
& \mathcal{E}_{n}=\mathcal{E} \cap \mathcal{C}_{n}, \quad \mathcal{F}_{n}=\mathcal{F} \cap \mathcal{E}_{n}, \quad \mathcal{F}_{n}^{\prime}=\left\{u+\xi: u \in \mathcal{F}_{n}\right\} .
\end{aligned}
$$

Under the correspondence $u \mapsto K_{u}, \mathcal{F}_{n}$ (resp. \mathcal{F}_{n}^{\prime}) corresponds to the set of all real (resp. inert imaginary) separable quadratic extensions K_{u} of k with genus $n-1$. For any positive integer s, let \mathcal{G}_{s} be the set of polynomials $F(T) \in \mathbb{A}$ of the form

$$
F(T)=\alpha+\sum_{i=1}^{s} \alpha_{i} T^{2 i-1}, \quad \text { where } \alpha \in\{0, \xi\}, \alpha_{i} \in \mathbb{F}_{q} \text { and } \alpha_{s} \neq 0
$$

Let $\mathcal{F}_{0}=\{0\}$. For any integers $r \geq 0$ and $s \geq 1$, let $\mathcal{I}_{(r, s)}=\{u+F: u \in$ $\left.\mathcal{F}_{r}, F \in \mathcal{G}_{s}\right\}$. For any integer $n \geq 1$, let \mathcal{I}_{n} be the union of all $\mathcal{I}_{(r, s)}$, where (r, s) runs over all pairs of nonnegative integers such that $s>0$ and $r+s=n$. Then, under the correspondence $u \mapsto K_{u}, \mathcal{I}_{n}$ corresponds to the set of all ramified imaginary separable quadratic extensions K_{u} of k with genus $n-1$.

We have that $\# \mathcal{B}_{n}=q^{n}, \# \mathcal{E}_{n}=q^{2 n}, \# \mathcal{F}_{n}=\zeta_{\mathbb{A}}(2)^{-1} q^{2 n}$ and $\# \mathcal{I}_{n}=$ $2 \zeta_{\mathbb{A}}(2)^{-1} q^{2 n-1}$ (see [6, Lemma 2.3]). For each $M \in \mathcal{B}$, let \mathcal{C}_{M} be the set of rational functions $u \in \mathcal{C}$ whose denominator divides $M, \mathcal{E}_{M}=\mathcal{E} \cap \mathcal{C}_{M}$ and $\mathcal{F}_{M}=\mathcal{F} \cap \mathcal{C}_{M}$. Note that $\mathcal{E}_{n}\left(\right.$ resp. $\left.\mathcal{F}_{n}\right)$ is the disjoint union of \mathcal{E}_{M} (resp. \mathcal{F}_{M}) with $M \in \mathcal{B}_{n}$. Let $\tilde{M}=\prod_{P \mid M} P^{\left(\nu_{P}(M)+1\right) / 2}$. We also note that $\# \mathcal{E}_{M}=|\tilde{M}|$ and $\# \mathcal{F}_{M}=\Phi(\tilde{M})$, where $\Phi(\tilde{M})=\#(\mathbb{A} / \tilde{M} \mathbb{A})^{\times}$.

2.2. Hasse symbol and L-functions

For any $u \in k$ whose denominator is not divisible by $P \in \mathbb{P}$, the Hasse symbol $[u, P)$ with values in \mathbb{F}_{2} is defined by

$$
[u, P)= \begin{cases}0 & \text { if } X^{2}+X \equiv u(\bmod P) \text { is solvable in } \mathbb{A} \\ 1 & \text { otherwise }\end{cases}
$$

For $N \in \mathbb{A}$ prime to the denominator of u, if $N=\operatorname{sgn}(N) \prod_{i=1}^{s} P_{i}^{e_{i}}$, where $\operatorname{sgn}(N)$ is the leading coefficient of N and $P_{i} \in \mathbb{P}$ are distinct and $e_{i} \geq 1$, we define $[u, N)$ to be $\sum_{i=1}^{s} e_{i}\left[u, P_{i}\right)$.

For $u \in k$ and $0 \neq N \in \mathbb{A}$, we also define the quadratic symbol:

$$
\left\{\frac{u}{N}\right\}= \begin{cases}(-1)^{[u, N)} & \text { if } N \text { is prime to the denominator of } u \\ 0 & \text { otherwise. }\end{cases}
$$

This symbol is clearly additive in its first variable, and multiplicative in the second variable.

For the field K_{u}, we associate a character χ_{u} on \mathbb{A}^{+}which is defined by $\chi_{u}(f)=\left\{\frac{u}{f}\right\}$, and let $L\left(s, \chi_{u}\right)$ be the L-function associated to the character χ_{u} : for $s \in \mathbb{C}$ with $\operatorname{Re}(s) \geq 1$,

$$
L\left(s, \chi_{u}\right):=\sum_{f \in \mathbb{A}^{+}} \frac{\chi_{u}(f)}{|f|^{s}}=\prod_{P \in \mathbb{P}}\left(1-\frac{\chi_{u}(P)}{|P|^{s}}\right)^{-1}
$$

It is well known that $L\left(s, \chi_{u}\right)$ is a polynomial in q^{-s}. Letting $z=q^{-s}$, write $\mathcal{L}\left(z, \chi_{u}\right)=L\left(s, \chi_{u}\right)$. Then, $\mathcal{L}\left(z, \chi_{u}\right)$ is a polynomial in z of degree $2 g_{u}+\frac{1}{2}(1+$ $\left.(-1)^{\varepsilon(u)}\right)$, where $\varepsilon(u)=1$ if K_{u} is ramified imaginary and $\varepsilon(u)=0$ otherwise. Also we have that $\mathcal{L}\left(z, \chi_{u}\right)$ has a "trivial" zero at $z=1$ (resp. $z=-1$) if and only if K_{u} is real (resp. inert imaginary), so we can define the "completed" L-function as

$$
\mathcal{L}^{*}\left(z, \chi_{u}\right)= \begin{cases}\mathcal{L}\left(z, \chi_{u}\right) & \text { if } K_{u} \text { is ramified imaginary } \tag{2.4}\\ (1-z)^{-1} \mathcal{L}\left(z, \chi_{u}\right) & \text { if } K_{u} \text { is real } \\ (1+z)^{-1} \mathcal{L}\left(z, \chi_{u}\right) & \text { if } K_{u} \text { is inert imaginary }\end{cases}
$$

which is a polynomial of even degree $2 g_{u}$ satisfying the functional equation

$$
\begin{equation*}
\mathcal{L}^{*}\left(z, \chi_{u}\right)=\left(q z^{2}\right)^{g_{u}} \mathcal{L}^{*}\left(\frac{1}{q z}, \chi_{u}\right) . \tag{2.5}
\end{equation*}
$$

3. Statement of results

Let μ be a positive integer. Let $L^{(\mu)}\left(s, \chi_{u}\right)$ be the μ-th derivative of $L\left(s, \chi_{u}\right)$. For any integer $n \geq 0$, let $J_{\mu}(n)$ be the sum of the μ-th powers of the first n positive integers, i.e., $J_{\mu}(n)=\sum_{\ell=1}^{n} \ell^{\mu}$. Faulhaber's formula tell us that $J_{\mu}(n)$ can be rewritten as a polynomial in n of degree $\mu+1$ with zero constant term, that is, $J_{\mu}(n)=\sum_{m=1}^{\mu+1} j_{\mu}(m) n^{m}$.

Let

$$
G(s)=\sum_{L \in \mathbb{A}^{+}} \frac{\mu(L)}{|L|^{s} \prod_{P \mid L}(1+|P|)},
$$

where $\mu(L)$ is the Möbius function for polynomials. So for any integer $m \geq 0$, we have

$$
\begin{equation*}
\frac{G^{(m)}(s)}{(-\ln q)^{m}}=\sum_{L \in \mathbb{A}^{+}} \frac{\mu(L) \operatorname{deg}(L)^{m}}{|L|^{s} \prod_{P \mid L}(1+|P|)} \tag{3.1}
\end{equation*}
$$

We are now ready to state two of the main results of this paper. The first theorem is the mean values of derivatives of Dirichlet L-functions associated to the imaginary quadratic function field K_{u} with $u \in \mathcal{I}_{g+1}$.
Theorem 3.1. Let μ be a fixed positive integer and q be a fixed power of 2. Assume that $q>2$. Then we have

$$
\begin{aligned}
& \sum_{u \in \mathcal{I}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(\ln q)^{\mu}} \\
= & \frac{(-1)^{\mu} 2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{\mu}\left(\left[\frac{g}{2}\right]\right)+\frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}}\right) \\
& +\frac{(-2)^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} \\
& +\frac{2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu}\binom{\mu}{m}(-g)^{\mu-m}\left(G(1) J_{m}\left(\left[\frac{g-1}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu}\binom{\mu}{m}(-g)^{\mu-m} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) .
\end{aligned}
$$

We remark that the main term in Theorem 3.1 is two times of the one in [3, Theorem 3.1] since under the correspond $D \mapsto k(\sqrt{D}), \mathcal{H}_{2 g+1} \cup \gamma \mathcal{H}_{2 g+1}$ corresponds to the set of all ramified imaginary separable quadratic extensions K of k with genus g in odd characteristic case, where γ is any non-square element of \mathbb{F}_{q}^{*}.

The second theorem is the mean values of derivatives of Dirichlet L-functions associated to the real quadratic function field K_{u} with $u \in \mathcal{F}_{g+1}$.
Theorem 3.2. Let μ be a fixed positive integer and q be a fixed power of 2 . Assume that $q>2$. Then we have

$$
\begin{aligned}
& \sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(-\ln q)^{\mu}} \\
= & \frac{2^{\mu} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{\mu}\left(\left[\frac{g}{2}\right]\right)+\frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}}\right)-\frac{2^{\mu} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}
\end{aligned}
$$

$$
\begin{aligned}
& -G(1)(g+1)^{\mu} q^{2 g+\left[\frac{g}{2}\right]-\frac{g}{2}+\frac{3}{2}}-G(1) q^{2 g+\left[\frac{g-1}{2}\right]-\frac{g-1}{2}+\frac{3}{2}} \sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}} \\
& +\frac{q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a}(-2)^{c} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}}\left(G(1) J_{c}\left(\left[\frac{g-1}{2}\right]\right)+\frac{G^{(c)}(1)}{(-\ln q)^{c}}\right) \\
& -\frac{q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a}(-2)^{c} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \sum_{a=1}^{c+1} j_{c}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3 g}{2}}\right),
\end{aligned}
$$

where $\delta(s)=\frac{1-q^{-s}}{1-q^{s-1}}$.

4. Main tools

In this section we present a few auxiliary results that will be used in the proof of the main theorems.

Lemma 4.1. For any $f \in \mathbb{A}_{n}^{+}$with $n \leq g$, which is not a perfect square, we have

$$
\sum_{u \in \mathcal{I}_{g+1}}\left\{\frac{u}{f}\right\} \ll 2^{\frac{n}{2}} g q^{g}
$$

Proof. This is Proposition 3.20 in [6].
Lemma 4.2. Let n be a positive integer. For any $f \in \mathbb{A}_{d}^{+}$, which is not a perfect square, we have

$$
\sum_{u \in \mathcal{F}_{n}}\left\{\frac{u}{f}\right\} \ll 2^{\frac{d}{2}} q^{n}
$$

Proof. This is Proposition 3.15 in [6].
Lemma 4.3. Let $L \in \mathbb{A}^{+}$. Given any $\epsilon>0$, we have

$$
\sum_{\substack{f \in \mathbb{A}_{n}^{+} \\(f, L)=1}} \Phi(f)=\frac{q^{2 n}}{\zeta_{\mathbb{A}}(2)} \prod_{P \mid L}\left(1+|P|^{-1}\right)^{-1}+O\left(q^{(1+\epsilon) n}\right) .
$$

Proof. This is Lemma 3.3 in [6].
Applying Lemma 4.3 with $\epsilon=\frac{1}{2}$, we have the following corollary.
Corollary 4.4. We have

$$
\begin{equation*}
\sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{f \in \mathbb{A}_{\begin{subarray}{c}{+(f, L)=1} }}} \end{subarray}(f)=\frac{q^{2 n+\ell}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)}+O\left(q^{\frac{3 n}{2}+\ell}\right)} \tag{4.1}
\end{equation*}
$$

Lemma 4.5. Let $m \geq 0$ be an integer. Then we have

$$
\sum_{\substack{L \in \mathbb{A}^{+} \\ \operatorname{deg}(L)>\left[\frac{g}{2}\right]}} \frac{\mu(L) \operatorname{deg}(L)^{m}}{|L| \prod_{P \mid L}(1+|P|)}=O\left(g^{m} q^{-\frac{g}{2}}\right) .
$$

Proof. This is Lemma 3.4 in [5].
Lemma 4.6. For $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$, we have

$$
\begin{aligned}
& \sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{\substack{M \in \mathcal{B}_{s} \\
(M, L)=1}} \sum_{u \in \mathcal{I}_{M}} 1 \\
= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right) .
\end{aligned}
$$

Proof. Put

$$
\mathcal{M}_{h, m}(\mu)=\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{\substack{M \in \mathcal{B}_{s} \\(M, L)=1}} \sum_{u \in \mathcal{I}_{M}} 1 .
$$

Since $\# \mathcal{I}_{M}=\frac{2}{\zeta_{A}(2)} q^{g+1-s} \Phi(\tilde{M})$, we have

$$
\mathcal{M}_{h, m}(\mu)=\frac{2^{m+1} q^{g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^{m} q^{-\ell} \sum_{s=1}^{g} q^{-s} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{\tilde{\tilde{N} \in \mathbb{A}_{s}^{+}} \\(\tilde{M}, L)=1}} \Phi(\tilde{M}) .
$$

Then, by using (4.1), we can get
$\mathcal{M}_{h, m}(\mu)=\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^{m} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)}+O\left(g^{m} q^{\frac{3 g}{2}}\right)$

$$
\begin{equation*}
=\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq\left\lfloor\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \sum_{\operatorname{deg}(D) \leq \ell \leq\left[\frac{h}{2}\right]} \ell^{m}+O\left(g^{m} q^{\frac{3 g}{2}}\right) . \tag{4.2}
\end{equation*}
$$

For integer $m \geq 0$, recall that $J_{m}(n)=\sum_{\ell=1}^{n} \ell^{m}$, which is a polynomial in n of degree $m+1$ with zero constant term. Write $J_{m}(n)=\sum_{a=1}^{m+1} j_{m}(a) n^{a}$. Then we have

$$
\begin{equation*}
\sum_{\operatorname{deg}(L) \leq \ell \leq\left[\frac{h}{2}\right]} \ell^{m}=J_{m}\left(\left[\frac{h}{2}\right]\right)+\operatorname{deg}(L)^{m}-\sum_{a=1}^{m+1} j_{m}(a) \operatorname{deg}(L)^{a} . \tag{4.3}
\end{equation*}
$$

Inserting (4.3) into (4.2), we have

$$
\begin{aligned}
\mathcal{M}_{h, m}(\mu)= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} J_{m}\left(\left[\frac{h}{2}\right]\right) \sum_{D \in \mathbb{A}_{\leq\left[\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \\
& +\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq\left[\frac{h}{2}\right]}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{m}}{|D| \prod_{P \mid D}(1+|P|)} \\
(4.4) \quad & -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}_{\leq\left[\frac{h}{2}\right]}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{a}}{|D| \prod_{P \mid D}(1+|P|)}+O\left(g^{m} q^{\frac{3 g}{2}}\right) .
\end{aligned}
$$

Then, from (4.4), by using Lemma 4.5, we get that

$$
\begin{aligned}
\mathcal{M}_{h, m}(\mu)= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} J_{m}\left(\left[\frac{h}{2}\right]\right) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \\
& +\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{m}}{|D| \prod_{P \mid D}(1+|P|)} \\
4.5) \quad & -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{a}}{|D| \prod_{P \mid D}(1+|P|)}+O\left(g^{m} q^{\frac{3 g}{2}}\right) .
\end{aligned}
$$

We also recall that for any integer $n \geq 0$, we have

$$
\begin{equation*}
\frac{G^{(n)}(s)}{(-\ln q)^{n}}=\sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \operatorname{deg}(D)^{n}}{|D|^{s} \prod_{P \mid D}(1+|P|)} \tag{4.6}
\end{equation*}
$$

Finally, by (4.5) and (4.6), we get

$$
\begin{aligned}
\mathcal{M}_{h, m}(\mu)= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right)
\end{aligned}
$$

Lemma 4.7. For $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$, we have

$$
\begin{aligned}
\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\
(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right)
\end{aligned}
$$

Proof. Put

$$
\mathcal{N}_{h, m}(\mu)=\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1 .
$$

Since $\# \mathcal{F}_{M}=\Phi(\tilde{M})$, we have

Then, by using (4.1), we can get

$$
\begin{align*}
& \mathcal{N}_{h, m}(\mu)=\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^{m} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)}+O\left(g^{m} q^{\frac{3 g}{2}}\right) \\
& (4.7) \quad=\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq\left[\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \sum_{\operatorname{deg}(D) \leq \ell \leq\left[\frac{h}{2}\right]} \ell^{m}+O\left(g^{m} q^{\frac{3 g}{2}}\right) . \tag{4.7}
\end{align*}
$$

Inserting (4.3) into (4.7), we have

$$
\begin{aligned}
\mathcal{N}_{h, m}(\mu)= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} J_{m}\left(\left[\frac{h}{2}\right]\right) \sum_{D \in \mathbb{A}_{\leq\left\lfloor\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \\
& +\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\left.\leq \leq \frac{h}{2}\right]}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{m}}{|D| \prod_{P \mid D}(1+|P|)} \\
(4.8) \quad & -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}_{\leq\left[\frac{h}{2}\right]}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{a}}{|D| \prod_{P \mid D}(1+|P|)}++O\left(g^{m} q^{\frac{3 g}{2}}\right) .
\end{aligned}
$$

Then, from (4.8), by using Lemma 4.5, we get that

$$
\begin{align*}
\mathcal{N}_{h, m}(\mu)= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} J_{m}\left(\left[\frac{h}{2}\right]\right) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \\
& +\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{m}}{|D| \prod_{P \mid D}(1+|P|)} \\
9) \quad & -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \operatorname{deg}(L)^{a}}{|D| \prod_{P \mid D}(1+|P|)}+O\left(g^{m} q^{\frac{3 g}{2}}\right) . \tag{4.9}
\end{align*}
$$

Finally, by (4.9) and (4.6), we get

$$
\begin{aligned}
\mathcal{N}_{h, m}(\mu)= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right) .
\end{aligned}
$$

Lemma 4.8. For $h \in\{g-1, g\}$, we have

$$
q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1=G(1) q^{2 g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}}+O\left(g q^{\frac{3 g}{2}}\right) .
$$

Proof. Put

$$
\mathcal{L}_{h, m}(\mu)=q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1 .
$$

Since $\# \mathcal{F}_{M}=\Phi(\tilde{M})$, we have

Then, by using (4.1), we can get

$$
\begin{align*}
& \mathcal{L}_{h, m}(\mu)=\frac{q^{2 g-\frac{h}{2}+\frac{3}{2}}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} q^{\ell} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)}+O\left(q^{\frac{3 g}{2}}\right) \\
& 10) \quad=\frac{q^{2 g-\frac{h}{2}+\frac{3}{2}}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\left.\leq \leq \frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \sum_{\operatorname{deg}(D) \leq \ell \leq\left[\frac{h}{2}\right]} q^{\ell}+O\left(q^{\frac{3 g}{2}}\right) . \tag{4.10}
\end{align*}
$$

Since

$$
\sum_{\operatorname{deg}(D) \leq \ell \leq\left[\frac{h}{2}\right]} q^{\ell}=\zeta_{\mathbb{A}}(2)\left(q^{\left[\frac{h}{2}\right]}-q^{\operatorname{deg}(D)-1}\right),
$$

we have

$$
\begin{align*}
\mathcal{L}_{h, m}(\mu)= & q^{2 g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}} \sum_{D \in \mathbb{A}_{\leq\left\lfloor\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)} \\
& -q^{2 g-\frac{h}{2}+\frac{1}{2}} \sum_{D \in \mathbb{A}_{\left.\leq \leq \frac{h}{2}\right]}^{+}} \frac{\mu(D)}{\prod_{P \mid D}(1+|P|)}+O\left(q^{\frac{3 g}{2}}\right) . \tag{4.11}
\end{align*}
$$

By Lemma 4.5 and (4.6), we have

$$
\begin{equation*}
\sum_{D \in \mathbb{A}_{\leq\left\lfloor\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P \mid D}(1+|P|)}=G(1)+O\left(q^{-\frac{g}{2}}\right) . \tag{4.12}
\end{equation*}
$$

We also have

$$
\begin{equation*}
\left|\sum_{D \in \mathbb{A}_{\left.\leq \leq \frac{h}{2}\right]}^{+}} \frac{\mu(D)}{\prod_{P \mid D}(1+|P|)}\right| \ll \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{D \in \mathcal{H}_{\ell}} \frac{1}{|D|} \ll g . \tag{4.13}
\end{equation*}
$$

By inserting (4.12) and (4.13) into (4.11), we get

$$
\mathcal{L}_{h, m}(\mu)=G(1) q^{2 g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}}+O\left(g q^{\frac{3 g}{2}}\right) .
$$

5. Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1.

5.1. μ-th derivative of $L\left(s, \chi_{u}\right)$ for $u \in \mathcal{I}_{g+1}$

Let $u \in \mathcal{I}_{g+1}$. Then $L\left(s, \chi_{u}\right)$ can be represented as

$$
L\left(s, \chi_{u}\right)=\sum_{f \in \mathbb{A}_{\leq g}^{+}} \chi_{u}(f)|f|^{-s}+q^{(1-2 s) g} \sum_{f \in \mathbb{A}_{\leq g-1}^{+}} \chi_{u}(f)|f|^{s-1} .
$$

Lemma 5.1. Let $u \in \mathcal{I}_{g+1}$. For any integer $\mu \geq 0$, we have

$$
\begin{aligned}
\frac{L^{(\mu)}\left(s, \chi_{u}\right)}{(\ln q)^{\mu}}= & \sum_{n=0}^{g}(-n)^{\mu} A_{n}(u) q^{-n s} \\
& +q^{(1-2 s) g} \sum_{m=0}^{\mu}\binom{\mu}{m}(-2 g)^{\mu-m} \sum_{n=0}^{g-1} n^{m} A_{n}(u) q^{(s-1) n}
\end{aligned}
$$

where $A_{n}(u)=\sum_{f \in \mathbb{A}_{n}^{+}} \chi_{u}(f)$. In particular, we also have

$$
\begin{align*}
\frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(\ln q)^{\mu}}= & \sum_{n=0}^{g}(-n)^{\mu} A_{n}(u) q^{-\frac{n}{2}} \\
& +\sum_{m=0}^{\mu}\binom{\mu}{m}(-2 g)^{\mu-m} \sum_{n=0}^{g-1} n^{m} A_{n}(u) q^{-\frac{n}{2}} . \tag{5.1}
\end{align*}
$$

Proof. See the proof of Lemma 5.1 in [3].
Write

$$
\mathcal{S}_{h, m}^{\circ}(\mu)=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_{n}^{+}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)
$$

for $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$. Then, by (5.1), we can write

$$
\sum_{u \in \mathcal{I}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(\ln q)^{\mu}}=(-1)^{\mu} \mathcal{S}_{g, \mu}^{\circ}(\mu)+\sum_{m=0}^{\mu}\binom{\mu}{m}(-2 g)^{\mu-m} \mathcal{S}_{g-1, m}^{\circ}(\mu)
$$

5.2. Averaging $\mathcal{S}_{h, m}^{\mathrm{o}}(\mu)$

In this subsection we obtain an asymptotic formula of $\mathcal{S}_{h, m}^{\circ}(\mu)$.
Proposition 5.2. For $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$, we have

$$
\begin{align*}
\mathcal{S}_{h, m}^{\circ}(\mu)= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} 2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) \tag{5.2}
\end{align*}
$$

Proof. We split the sum over f with f being a perfect square of a polynomial or not. Then we can write

$$
\mathcal{S}_{h, m}^{\circ}(\mu)=\mathcal{S}_{h, m}^{\circ}(\mu)_{\square}+\mathcal{S}_{h, m}^{\circ}(\mu)_{\neq \square},
$$

where

$$
\begin{equation*}
\mathcal{S}_{h, m}^{\circ}(\mu)_{\square}=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f=\square}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f) \tag{5.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{S}_{h, m}^{\circ}(\mu)_{\neq \square}=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f) . \tag{5.4}
\end{equation*}
$$

For the contribution of non-squares, from (5.4) by using Lemma 4.1, we have

$$
\begin{align*}
\left|\mathcal{S}_{h, m}^{\circ}(\mu)_{\neq \square}\right| & \ll \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\
f \neq \square}}\left|\sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)\right| \\
& \ll g q^{g} \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_{n}^{+}} 2^{\frac{n}{2}} \ll g^{m} 2^{\frac{g}{2}} q^{\frac{3}{2} g} . \tag{5.5}
\end{align*}
$$

Now, we consider the contribution of squares. We can write

$$
\mathcal{S}_{h, m}^{\circ}(\mu)_{\square}=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f=\square}} \sum_{s=0}^{g} \sum_{u \in \mathcal{I}_{(s, g+1-s)}} \chi_{u}(f) .
$$

Note that $\mathcal{I}_{(0, g+1)}=\mathcal{G}_{g+1}$. For $1 \leq s \leq g$ and $M \in \mathcal{B}_{s}$, let $\mathcal{I}_{M}=\{v+F$: $v \in \mathcal{F}_{M}$ and $\left.F \in \mathcal{G}_{g+1-s}\right\}$. Then $\mathcal{I}_{(s, g+1-s)}$ is the disjoint union of the \mathcal{I}_{M} 's, where M runs over \mathcal{B}_{r}. Hence, we see that

$$
\begin{align*}
\mathcal{S}_{h, m}^{\circ}(\mu)_{\square}= & \sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{F \in \mathcal{G}_{g+1}}\left\{\frac{F}{L^{2}}\right\} \\
& +\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{M \in \mathcal{B}_{s}} \sum_{u \in \mathcal{I}_{M}}\left\{\frac{u}{L^{2}}\right\} \\
(5.6)= & \sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{F \in \mathcal{G}_{g+1}} 1+\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{\substack{M \in \mathcal{B}_{s} \\
(M, L)=1}} \sum_{u \in \mathcal{I}_{M}} 1 . \tag{5.6}
\end{align*}
$$

Since $\# \mathcal{G}_{g+1}=\frac{2}{\zeta_{\mathbb{A}}(2)} q^{g+1}$, we have

$$
\begin{equation*}
\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{F \in \mathcal{G}_{g+1}} 1=\frac{2 q^{g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} \ll g^{m} q^{g} \tag{5.7}
\end{equation*}
$$

We also have, by Lemma 4.6, that

$$
\begin{align*}
& \sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{\substack{M \in \mathcal{B}_{s} \\
(M, L)=1}} \sum_{u \in \mathcal{I}_{M}} 1 \\
= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right) . \tag{5.8}
\end{align*}
$$

By inserting (5.7) and (5.8) into (5.6), we get

$$
\begin{align*}
\mathcal{S}_{h, m}^{\circ}(\mu)_{\square}= & \frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right) . \tag{5.9}
\end{align*}
$$

Finally, combining (5.5) and (5.9), we obtain the result.

5.3. Completing the proof

Recall that

$$
\begin{equation*}
\sum_{u \in \mathcal{I}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(\ln q)^{\mu}}=(-1)^{\mu} \mathcal{S}_{g, \mu}^{\circ}(\mu)+\sum_{m=0}^{\mu}\binom{\mu}{m}(-2 g)^{\mu-m} \mathcal{S}_{g-1, m}^{\circ}(\mu) . \tag{5.10}
\end{equation*}
$$

By (5.9) with $h=g$ and $m=\mu$, we have that

$$
\begin{align*}
(-1)^{\mu} \mathcal{S}_{g, \mu}^{\circ}(\mu)= & \frac{(-1)^{\mu} 2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{\mu}\left(\left[\frac{g}{2}\right]\right)+\frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}}\right) \\
& +\frac{(-2)^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) \tag{5.11}
\end{align*}
$$

We also, by (5.9), have that

$$
\begin{align*}
& \sum_{m=0}^{\mu}\binom{\mu}{m}(-2 g)^{\mu-m} \mathcal{S}_{g-1, m}^{\circ}(\mu) \\
= & \frac{2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu}\binom{\mu}{m}(-g)^{\mu-m}\left(G(1) J_{m}\left(\left[\frac{g-1}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
) & -\frac{2^{\mu+1} q^{2 g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu}\binom{\mu}{m}(-g)^{\mu-m} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) . \tag{5.12}
\end{align*}
$$

By inserting (5.11) and (5.12) into (5.10), we complete the proof.

6. Proof of Theorem 3.2

In this section we give a proof of Theorem 3.2.

6.1. μ-th derivative of $L\left(s, \chi_{u}\right)$ for $u \in \mathcal{F}_{g+1}$

For $u \in \mathcal{F}_{g+1}, L\left(s, \chi_{u}\right)$ can be represented as

$$
\begin{aligned}
L\left(s, \chi_{u}\right)= & \sum_{f \in \mathbb{A}_{\leq g}^{+}} \chi_{u}(f)|f|^{-s}-q^{-(g+1) s} \sum_{f \in \mathbb{A}_{\leq g}^{+}} \chi_{u}(f) \\
& +q^{(1-2 s) g} \delta(s) \sum_{f \in \mathbb{A}_{\leq g-1}^{+}} \chi_{u}(f)|f|^{s-1}-q^{-g s} \delta(s) \sum_{f \in \mathbb{A}_{\leq g-1}^{+}} \chi_{u}(f),
\end{aligned}
$$

where $\delta(s)=\frac{1-q^{-s}}{1-q^{s-1}}$.
Lemma 6.1. Let $u \in \mathcal{F}_{g+1}$. For any integer $\mu \geq 0$, we have

$$
\begin{aligned}
\frac{L^{(\mu)}\left(s, \chi_{u}\right)}{(-\ln q)^{\mu}}= & \sum_{n=0}^{g} n^{\mu} A_{n}(u) q^{-n s}-(g+1)^{\mu} q^{-(g+1) s} \sum_{n=0}^{g} A_{n}(u) \\
& +q^{(1-2 s) g} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a} \delta^{(b)}(s)}{(-\ln q)^{b}} \sum_{n=0}^{g-1}(-n)^{c} A_{n}(u) q^{n(s-1)} \\
& -q^{-g s} \sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}(s)}{(-\ln q)^{m}} \sum_{n=0}^{g-1} A_{n}(u)
\end{aligned}
$$

where $A_{n}(u)=\sum_{f \in \mathbb{A}_{n}^{+}} \chi_{u}(f)$. In particular, we also have

$$
\begin{align*}
\frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(-\ln q)^{\mu}}= & \sum_{n=0}^{g} n^{\mu} A_{n}(u) q^{-\frac{n}{2}}-(g+1)^{\mu} q^{-\frac{g+1}{2}} \sum_{n=0}^{g} A_{n}(u) \\
& +\sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \sum_{n=0}^{g-1}(-n)^{c} A_{n}(u) q^{-\frac{n}{2}} \\
& -q^{-\frac{g}{2}} \sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}} \sum_{n=0}^{g-1} A_{n}(u) . \tag{6.1}
\end{align*}
$$

Proof. See the proof of Lemma 6.1 in [3].
Write

$$
\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_{n}^{+}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f)
$$

and

$$
\mathcal{T}_{h}(\mu)=q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{f \in \mathbb{A}_{n}^{+}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f)
$$

for $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$. Then, by (6.1), we can write

$$
\begin{aligned}
\sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(-\ln q)^{\mu}}= & \mathcal{S}_{g, \mu}^{\mathrm{e}}(\mu)-(g+1)^{\mu} \mathcal{T}_{g}(\mu) \\
& +\sum_{a+b+c=\mu} \frac{(-1)^{c} \mu!}{a!b!c!} \frac{(2 g)^{a} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \mathcal{S}_{g-1, c}^{\mathrm{e}}(\mu) \\
& -\sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}} \mathcal{T}_{g-1}(\mu)
\end{aligned}
$$

6.2. Averaging $\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)$

In this subsection we obtain an asymptotic formula of $\mathcal{S}_{h, m}^{e}(\mu)$.
Proposition 6.2. For $h \in\{g-1, g\}$ and $m \in\{0,1, \ldots, \mu\}$, we have

$$
\begin{align*}
\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} 2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) . \tag{6.2}
\end{align*}
$$

Proof. We can write $\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)=\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\square}+\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\neq \square}$, where

$$
\begin{equation*}
\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\square}=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f=\square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f) \tag{6.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\neq \square}=\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f) \tag{6.4}
\end{equation*}
$$

For the contribution of non-squares, from (6.4) by using Lemma 4.2, we have

$$
\begin{align*}
\left|\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\neq \square}\right| & \ll \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\
f \neq \square}}\left|\sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f)\right| \\
& \ll q^{g} \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_{n}^{+}} 2^{\frac{n}{2}} \ll g^{m} 2^{\frac{g}{2}} q^{\frac{3}{2} g} \tag{6.5}
\end{align*}
$$

Now, we consider the contribution of square parts. For each $M \in \mathcal{B}_{g+1}$, let \mathcal{F}_{M} be the set of rational functions $u \in \mathcal{F}_{g+1}$ whose denominator is M. Then \mathcal{F}_{g+1} is a disjoint union of the \mathcal{F}_{M} 's, where M runs over \mathcal{B}_{g+1}. Hence, we can write

$$
\begin{aligned}
\mathcal{S}_{h, m}^{e}(\mu)_{\square} & =\sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\
f=\square}} \sum_{M \in \mathcal{B}_{g+1}} \sum_{u \in \mathcal{F}_{M}} \chi_{u}(f) \\
& =\sum_{\ell=0}^{\left[\frac{h}{2}\right]}(2 \ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\
(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1 .
\end{aligned}
$$

Then, by Lemma 4.7, we have

$$
\begin{align*}
\mathcal{S}_{h, m}^{\mathrm{e}}(\mu)_{\square}= & \frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{m}\left(\left[\frac{h}{2}\right]\right)+\frac{G^{(m)}(1)}{(-\ln q)^{m}}\right) \\
& -\frac{2^{m} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{m} q^{\frac{3 g}{2}}\right) \tag{6.6}
\end{align*}
$$

Finally, combining (6.5) and (6.6), we obtain the result.

6.3. Averaging $\mathcal{T}_{\boldsymbol{h}}(\boldsymbol{\mu})$

In this subsection we obtain an asymptotic formula of $\mathcal{T}_{h}(\mu)$.
Proposition 6.3. For $h \in\{g-1, g\}$, we have

$$
\begin{equation*}
\mathcal{T}_{h}(\mu)=G(1) q^{2 g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}}+O\left(2^{\frac{g}{2}} q^{\frac{3}{2} g}\right) . \tag{6.7}
\end{equation*}
$$

Proof. We can write $\mathcal{T}_{h}(\mu)=\mathcal{T}_{h}(\mu)_{\square}+\mathcal{T}_{h}(\mu)_{\neq \square}$, where

$$
\begin{equation*}
\mathcal{T}_{h}(\mu)_{\square}=q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f=\square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f) \tag{6.8}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{T}_{h}(\mu)_{\neq \square}=q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f) . \tag{6.9}
\end{equation*}
$$

For the contribution of non-squares, from (6.9) by using Lemma 4.2, we have

$$
\begin{align*}
\left|\mathcal{T}_{h}(\mu)_{\neq \square}\right| & \ll q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\
f \neq \square}}\left|\sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f)\right| \\
& \ll q^{g-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{ \\
f \in \mathbb{A}_{n}^{+}}} 2^{\frac{n}{2}} \ll 2^{\frac{g}{2}} q^{\frac{3}{2} g} . \tag{6.10}
\end{align*}
$$

Now, we consider the contribution of square parts. Since \mathcal{F}_{g+1} is a disjoint union of the \mathcal{F}_{M} 's, where M runs over \mathcal{B}_{g+1}, we can write

$$
\mathcal{T}_{h}(\mu)_{\square}=q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f=\square}} \sum_{M \in \mathcal{B}_{g+1}} \sum_{u \in \mathcal{F}_{M}} \chi_{u}(f)=q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{\substack{L \in \mathbb{A}_{\ell}^{+}}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\(M, L)=1}} \sum_{u \in \mathcal{F}_{M}} 1 .
$$

Then, by Lemma 4.8, we have

$$
\begin{equation*}
\mathcal{T}_{h}(r)_{\square}=G(1) q^{2 g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}}+O\left(g q^{\frac{3 g}{2}}\right) . \tag{6.11}
\end{equation*}
$$

Finally, combining (6.10) and (6.11), we obtain the result.

6.4. Completing the proof

Recall that

$$
\begin{align*}
\sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}\left(\frac{1}{2}, \chi_{u}\right)}{(-\ln q)^{\mu}}= & \mathcal{S}_{g, \mu}^{\mathrm{e}}(\mu)-(g+1)^{\mu} \mathcal{T}_{g}(\mu) \\
& +\sum_{a+b+c=\mu} \frac{(-1)^{c} \mu!}{a!b!c!} \frac{(2 g)^{a} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \mathcal{S}_{g-1, c}^{\mathrm{e}}(\mu) \\
& -\sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}} \mathcal{T}_{g-1}(\mu) . \tag{6.12}
\end{align*}
$$

By using (6.2), we have that

$$
\begin{align*}
\mathcal{S}_{g, \mu}^{\mathrm{e}}(\mu)= & \frac{2^{\mu} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)}\left(G(1) J_{\mu}\left(\left[\frac{g}{2}\right]\right)+\frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}}\right) \\
& -\frac{2^{\mu} q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3 g}{2}}\right) \tag{6.13}
\end{align*}
$$

and

$$
\begin{align*}
& \sum_{a+b+c=\mu} \frac{(-1)^{c} \mu!}{a!b!c!} \frac{(2 g)^{a} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \mathcal{S}_{g-1, c}^{\mathrm{e}}(\mu) \\
= & \frac{q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a}(-2)^{c} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}}\left(G(1) J_{c}\left(\left[\frac{g-1}{2}\right]\right)+\frac{G^{(c)}(1)}{(-\ln q)^{c}}\right) \\
& -\frac{q^{2 g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2 g)^{a}(-2)^{c} \delta^{(b)}\left(\frac{1}{2}\right)}{(-\ln q)^{b}} \sum_{a=1}^{c+1} j_{c}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} \\
& +O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3 g}{2}}\right) . \tag{6.14}
\end{align*}
$$

By using (6.7), we also have

$$
\begin{equation*}
(g+1)^{\mu} \mathcal{T}_{g}(\mu)=G(1)(g+1)^{\mu} q^{2 g+\left[\frac{g}{2}\right]-\frac{g}{2}+\frac{3}{2}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3 g}{2}}\right) \tag{6.15}
\end{equation*}
$$

and

$$
\begin{align*}
& \sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}} \mathcal{T}_{g-1}(\mu) \\
= & G(1) q^{2 g+\left[\frac{g-1}{2}\right]-\frac{g-1}{2}+\frac{3}{2}} \sum_{m=0}^{\mu}\binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}\left(\frac{1}{2}\right)}{(-\ln q)^{m}}+O\left(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3 g}{2}}\right) . \tag{6.16}
\end{align*}
$$

By inserting (6.13), (6.14), (6.15) and (6.16) into (6.12), we complete the proof.

7. Appendix: Non-maximal order case

In this appendix, we consider the case of non-maximal orders, as was done in [1] in odd characteristic case. We use the same notations as in [7], with minor changes.

Let \mathcal{D} be the set of rational functions $\frac{D}{M^{2}} \in k$ such that $M \in \mathbb{A}^{+}, \operatorname{gcd}(D, M)$ $=1, \frac{D}{M^{2}} \notin \wp(k), \operatorname{sgn}(D)=\xi$ if $\operatorname{deg}(D)=2 \operatorname{deg}(M)$ and $2 \nmid \operatorname{deg}(D)$ if $\operatorname{deg}(D)>$ $2 \operatorname{deg}(M)$, where $\operatorname{sgn}(D)$ denotes the leading coefficient of D. Define \sim on \mathcal{D} by

$$
\frac{D}{M^{2}} \sim \frac{D^{\prime}}{M^{\prime 2}} \quad \text { if } M=M^{\prime} \text { and } \frac{D}{M^{2}}+\frac{D^{\prime}}{{M^{\prime}}^{2}} \in \wp(k)
$$

Then \sim is an equivalence relation and let $[(D, M)]$ be the equivalence class containing $\frac{D}{M^{2}}$. Let

$$
\mathcal{D}_{m}=\left\{[(D, M)]: M \in \mathbb{A}_{m}^{+}, \operatorname{deg}(D)<2 m\right\}
$$

$$
\begin{aligned}
& \mathcal{D}^{\prime}{ }_{m}=\left\{[(D, M)]: M \in \mathbb{A}_{m}^{+}, \operatorname{deg}(D)=2 m\right\} \\
& \tilde{\mathcal{D}}_{\ell, d}=\left\{[(D, M)]: M \in \mathbb{A}_{\ell}^{+}, \operatorname{deg}(D)=2 \ell+2 d+1\right\}
\end{aligned}
$$

and

$$
\tilde{\mathcal{D}}_{m}=\bigcup_{\ell+d=m-1} \tilde{\mathcal{D}}_{\ell, d}
$$

It is shown in [7] that

$$
\begin{aligned}
& \# \mathcal{D}_{m}=\# \mathcal{D}^{\prime}{ }_{m}=q^{2 m}-q^{m}, \quad \# \tilde{\mathcal{D}}_{\ell, d}=2(q-1) q^{2 \ell+d} \quad \text { and } \\
& \# \tilde{\mathcal{D}}_{m}=2\left(q^{2 m-1}-q^{m-1}\right)
\end{aligned}
$$

Note that $q^{2 m}-q^{m}$ is the number of monic polynomials of degree $2 m$ which is not a square. The reason for 2 in $\# \tilde{\mathcal{D}}_{m}$ is as follows; Write $D=A M^{2}+B$ with $\operatorname{deg}(B)<2 \operatorname{deg}(M)$. 2 is the factor that whether the constant term of A is contained in $\wp(k)$ or not, just like, when $\operatorname{deg}(D)$ is odd, whether $\operatorname{sgn}(D)$ is a square or not in odd characteristic case. We also note that the element $[(D, M)] \in \mathcal{D}_{m}$ (resp. \mathcal{D}_{m}^{\prime}, resp. $\left.\tilde{\mathcal{D}}_{m}\right)$ corresponds to monic nonsquare polynomial M of degree $2 m$ (resp. $\gamma M, M$ monic polynomial of degree $2 m$ for γ a generator of \mathbb{F}_{q}^{*}, resp. polynomial M of degree $2 m-1$ with $\operatorname{sgn}(M)=1$ or γ) in odd characteristic case.

Let

$$
\sigma_{n}(D, M)=\sum_{N \in \mathbb{A}_{n}^{+}}\left\{\frac{D / M^{2}}{N}\right\}
$$

Then

$$
L\left(s, \chi_{(D, M)}\right)=\sum_{n} \sigma_{n}(D, M) q^{-n s}
$$

Let

$$
\begin{gathered}
S_{m, n}=\sum_{[(D, M)] \in \mathcal{D}_{m}} \sigma_{n}(D, M), \quad S_{m, n}^{\prime}=\sum_{[(D, M)] \in \mathcal{D}^{\prime}{ }_{m}} \sigma_{n}(D, M) \\
\tilde{S}_{\ell, d, n}=\sum_{[(D, M)] \in \tilde{\mathcal{D}}_{\ell, d}} \sigma_{n}(D, M) \quad \text { and } \quad \tilde{S}_{m, n}=\sum_{[(D, M)] \in \tilde{\mathcal{D}}_{m}} \sigma_{n}(D, M) .
\end{gathered}
$$

It is shown in [7, Proposition 4.3, Fact 4.8 and Proposition 4.13] that

$$
S_{m, n}=S_{m, n}^{\prime}=\tilde{S}_{m, n}=0, \text { if } n \geq 2 m
$$

and, for $n<2 m$,

$$
\begin{align*}
S_{m, n} & =q^{m} \Phi\left(\frac{n}{2}, m\right)-\Phi(n, m)=\Phi\left(\frac{n}{2}, 2 m\right)-\Phi(n, m) \tag{7.1}\\
S_{m, n}^{\prime} & =q^{m} \Phi\left(\frac{n}{2}, m\right)-(-1)^{n} \Phi(n, m)=\Phi\left(\frac{n}{2}, 2 m\right)-(-1)^{n} \Phi(n, m) \\
\tilde{S}_{\ell, d, n} & =2(q-1) q^{\ell+d} \Phi\left(\frac{n}{2}, \ell\right) \quad \text { and } \quad \tilde{S}_{m, n}=2(q-1) q^{m-1} \sum_{\ell=0}^{m-1} \Phi\left(\frac{n}{2}, \ell\right)
\end{align*}
$$

where

$$
\Phi(a, m)= \begin{cases}q^{m} & \text { if } a=0, \tag{7.4}\\ \frac{q^{m+a}}{\zeta_{A}(2)} & \text { if } a \neq 0, \text { an integer }, \\ 0 & \text { if } a \text { is not an integer },\end{cases}
$$

as defined in [7, Proposition 4.4] and [1, Proposition 2.2].
Remark 7.1. We note that $S_{m, n}$ is equal to

$$
\sum_{M \in \mathbb{A}_{2 m}^{+}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{M}(N),
$$

and $S_{m, n}^{\prime}$ is equal to

$$
\sum_{M \in \gamma \mathbb{A}_{2 m}^{+}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{M}(N)
$$

in odd characteristic case $[1, \S 4, \S 5]$. Also one can see easily $([1, \S 3])$ that $\tilde{S}_{m, n}$ is equal to

$$
2 \sum_{M \in \mathbb{A}_{2 m-1}^{+}} \sum_{N \in \mathbb{A}_{n}^{+}} \chi_{M}(N)+O\left(\delta_{n} q^{m}\right),
$$

where δ_{n} is 1 or 0 according to n is even or odd.
Let B_{j} be the j th Bernoulli number and $\Phi(z, s, \alpha)$ be the Lerch transcendent function given by

$$
\Phi(z, s, \alpha)=\sum_{n=0}^{\infty} \frac{z^{n}}{(n+\alpha)^{s}},
$$

and $L i_{s}(z)$ be the polylogarithm function given by

$$
L i_{s}(z)=\sum_{n=1}^{\infty} \frac{z^{n}}{n^{s}}
$$

Lemma 7.2 (Faulharber's formula ([1], (2.5), (2.6), (2.7))). We have

$$
\begin{aligned}
\sum_{n=1}^{m} n^{\mu} & =\frac{1}{\mu+1} \sum_{j=0}^{\mu}(-1)^{j}\binom{\mu+1}{j} B_{j} m^{\mu+1-j}, \\
\sum_{n=1}^{2 m-1} n^{\mu} q^{\frac{n}{2}} & =-q^{m} \Phi(\sqrt{q},-\mu, 2 m)+L i_{-\mu}(\sqrt{q})
\end{aligned}
$$

and

$$
\sum_{n=1}^{2 m-1}(-1)^{n} n^{\mu} q^{\frac{n}{2}}=-q^{m} \Phi(-\sqrt{q},-\mu, 2 m)+L i_{-\mu}(-\sqrt{q}) .
$$

Note that there is a minor error in the formula (2.6) of [1].
Theorem 7.3. Let μ be a positive integer. Then we have
(i) $\sum_{[(D, M)] \in \tilde{\mathcal{D}}_{\ell, d}} L^{(\mu)}\left(\frac{1}{2}, \chi_{(D, M)}\right)$

$$
=2 \frac{(-2 \log q)^{\mu}}{\zeta_{\mathbb{A}}(2)^{2}(\mu+1)} q^{2 \ell+d+1} \sum_{n=0}^{\mu}(-1)^{n}\binom{\mu+1}{n} B_{n}(\ell+d)^{\mu+1-n}
$$

and

$$
\begin{aligned}
& \sum_{[(D, M)] \in \tilde{\mathcal{D}}_{m}} L^{(\mu)}\left(\frac{1}{2}, \chi_{(D, M)}\right) \\
= & 2 \frac{(-2 \log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{m-1}\left(q^{m}-1\right) \sum_{n=0}^{\mu}(-1)^{n}\binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n} .
\end{aligned}
$$

(ii) $\sum_{[(D, M)] \in \mathcal{D}_{m}} L^{(\mu)}\left(\frac{1}{2}, \chi_{(D, M)}\right)$

$$
\begin{aligned}
= & \frac{(-2 \log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{2 m} \sum_{n=0}^{\mu}(-1)^{n}\binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n} \\
& +\frac{(-\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{m}\left(q^{m} \Phi(\sqrt{q},-\mu, 2 m)-L i_{-\mu}(\sqrt{q})\right)
\end{aligned}
$$

(iii) $\sum_{[(D, M)] \in \mathcal{D}^{\prime}{ }_{m}} L^{(\mu)}\left(\frac{1}{2}, \chi_{(D, M)}\right)$

$$
\begin{aligned}
= & \frac{(-2 \log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{2 m} \sum_{n=0}^{\mu}(-1)^{n}\binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n} \\
& +\frac{(-\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{m}\left(q^{m} \Phi(-\sqrt{q},-\mu, 2 m)-L i_{-\mu}(-\sqrt{q})\right) .
\end{aligned}
$$

Proof. Once we have the formulas for $S_{m, n}, S_{m, n}^{\prime}$ and $\tilde{S}_{\ell, d, n}$, the computations in $[1, \S 3-5]$, can be applied to this case. We will prove the first formula for the convenience of the reader. We have

$$
\begin{aligned}
& \sum_{[(D, M)] \in \tilde{\mathcal{D}}_{\ell, d}} L^{(\mu)}\left(\frac{1}{2}, \chi_{(D, M)}\right) \\
= & (-1)^{\mu}(\log q)^{\mu} \sum_{n=0}^{2 \ell+2 d+1} \tilde{S}_{\ell, d, n} n^{\mu} q^{-n / 2} \\
= & 2(q-1)(-1)^{\mu}(\log q)^{\mu} q^{\ell+d} \sum_{n=0}^{2 \ell+2 d+1} \Phi\left(\frac{n}{2}, \ell\right) n^{\mu} q^{-n} \quad(\text { by }(7.3)) \\
= & 2(q-1) \frac{(-1)^{\mu}(\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{2 \ell+d} \sum_{n=1}^{\ell+d}(2 n)^{\mu} \quad(\text { by }(7.4)) .
\end{aligned}
$$

We get the result by Foulhaber's formula.

References

[1] J. Andrade, Mean values of derivatives of L-functions in function fields: II, J. Number Theory 183 (2018), 24-39. https://doi.org/10.1016/j.jnt.2017.08.038
[2] J. Andrade, Mean values of derivatives of L-functions in function fields: III, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 4, 905-913. https://doi.org/10.1017/prm. 2018.53
[3] J. Andrade and H. Jung, Mean values of derivatives of L-functions in function fields: IV, J. Korean Math. Soc. 58 (2021), no. 6, 1529-1547. https://doi.org/10.4134/JKMS. j210243
[4] J. C. Andrade and J. P. Keating, The mean value of $L\left(\frac{1}{2}, \chi\right)$ in the hyperelliptic ensemble, J. Number Theory 132 (2012), no. 12, 2793-2816. https://doi.org/10.1016/ j.jnt.2012.05.017
[5] J. Andrade and S. Rajagopal, Mean values of derivatives of L-functions in function fields: I, J. Math. Anal. Appl. 443 (2016), no. 1, 526-541. https://doi.org/10.1016/ j.jmaa. 2016.05.019
[6] S. Bae and H. Jung, Average values of L-functions in even characteristic, J. Number Theory 186 (2018), 269-303. https://doi.org/10.1016/j.jnt.2017.10.006
[7] Y.-M. J. Chen, Average values of L-functions in characteristic two, J. Number Theory 128 (2008), no. 7, 2138-2158. https://doi.org/10.1016/j.jnt.2007.12.011
[8] J. B. Conrey, The fourth moment of derivatives of the Riemann zeta-function, Quart. J. Math. Oxford Ser. (2) 39 (1988), no. 153, 21-36. https://doi.org/10.1093/qmath/ 39.1 .21
[9] J. B. Conrey, M. O. Rubinstein, and N. C. Snaith, Moments of the derivative of characteristic polynomials with an application to the Riemann zeta function, Comm. Math. Phys. 267 (2006), no. 3, 611-629. https://doi.org/10.1007/s00220-006-0090-5
[10] S. M. Gonek, Mean values of the Riemann zeta function and its derivatives, Invent. Math. 75 (1984), no. 1, 123-141. https://doi.org/10.1007/BF01403094
[11] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2) 27 (1927), no. 4, 273-300. https://doi.org/10.1112/plms/s227.1.273

Sunghan Bae
Department of Mathematics
KAIST
Taejon 305-701, Korea
Email address: shbae@kaist.ac.kr
Hwanyup Jung
Department of Mathematics Education
Chungbuk National University
Cheonguu 361-763, Korea
Email address: hyjung@chungbuk.ac.kr

[^0]: Received April 22, 2021; Revised August 31, 2021; Accepted November 8, 2021.
 2020 Mathematics Subject Classification. 11M38, 11M06, 11G20, 11M50.
 Key words and phrases. Function fields, even characteristic, derivatives of L-functions, moments of L-functions, quadratic Dirichlet L-functions.

 The second author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020R1F1A1A01066105).

