Bull. Korean Math. Soc. **59** (2022), No. 2, pp. 431–452

https://doi.org/10.4134/BKMS.b210330 pISSN: 1015-8634 / eISSN: 2234-3016

MEAN VALUES OF DERIVATIVES OF L-FUNCTIONS IN EVEN CHARACTERISTIC

SUNGHAN BAE AND HWANYUP JUNG

ABSTRACT. For any positive integer μ , we compute the mean value of the μ -th derivative of quadratic Dirichlet L-functions over the rational function field $\mathbb{F}_q(t)$, where q is a power of 2.

1. Introduction

In a series of papers [1,2,5], Andrade studied the mean values of derivatives of L-functions in function fields based on the use of the approximate functional equation for function field L-functions developed by Andrade and Keating in [4]. These results can be seen as a function field version of moments of derivatives of the Riemann zeta function as given by Ingham [11] which are further developed by the work of Conrey [8], Gonek [10] and Conrey, Rubinstein and Snaith [9].

For any non-square polynomial D in $\mathbb{F}_q[t]$, where q is odd, let $L(s,\chi_D)$ be the Dirichlet L-function associated to the quadratic character χ_D defined by Jacobi symbol in $\mathbb{F}_q[t]$. In [1], Andrade proved several mean values results for the derivatives of Dirichlet L-functions in function fields when the average is taken over all discriminants, i.e., over all monic polynomials of a prescribed degree in $\mathbb{F}_q[t]$. For any integer $\mu \geq 1$, he gave an exact formula for $\sum_D L^{(\mu)}(\frac{1}{2},\chi_D)$, where D runs over all non-square monic polynomials in $\mathbb{F}_q[t]$ of given degree and $L^{(\mu)}(s,\chi_D)$ is the μ -th derivative of $L(s,\chi_D)$ ([1, Theorem 1.1, Theorem 1.2]). In [2], Andrade investigated the mean values of derivatives of quadratic Dirichlet L-functions over function fields when the average is taken over monic irreducible polynomials P in $\mathbb{F}_q[t]$. He obtained asymptotic formulas for $\sum_P L'(\frac{1}{2},\chi_P)$ and $\sum_P L''(\frac{1}{2},\chi_P)$ as deg(P) goes to infinity and q fixed, where P runs over all monic irreducible polynomials of a prescribed degree in $\mathbb{F}_q[t]$. Let \mathcal{H}_n denote the set of monic square-free polynomials of degree n in $\mathbb{F}_q[t]$. In [5], Andrade and Rajagopal studied the mean values of second

Received April 22, 2021; Revised August 31, 2021; Accepted November 8, 2021. 2020 Mathematics Subject Classification. 11M38, 11M06, 11G20, 11M50.

Key words and phrases. Function fields, even characteristic, derivatives of L-functions, moments of L-functions, quadratic Dirichlet L-functions.

The second author was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2020R1F1A1A01066105).

derivatives of Dirichlet L-functions $L(s,\chi_D)$ at $s=\frac{1}{2}$. More precisely, they gave an asymptotic formulas for $\sum_D L''(\frac{1}{2},\chi_D)$, where D runs over \mathcal{H}_{2g+1} , as g goes to infinity and q fixed ([5, Theorem 2.1]). Recently, Andrade and Jung [3] extended the work of Andrade and Rajagopal to the mean values of μ -th derivatives of Dirichlet L-functions $L(s,\chi_D)$ at $s=\frac{1}{2}$. They gave asymptotic formulas for $\sum_D L^{(\mu)}(\frac{1}{2},\chi_D)$, where D runs over \mathcal{H}_{2g+1} or \mathcal{H}_{2g+2} , as g goes to infinity and q fixed ([3, Theorem 3.1, Theorem 3.2]). The aim of this paper is to study the mean values of derivatives of Dirichlet L-functions $L(s,\chi_\mu)$ at $s=\frac{1}{2}$ in even characteristic case. We give asymptotic formulas for $\sum_{u\in\mathcal{I}_{g+1}} L^{(\mu)}(\frac{1}{2},\chi_u)$ and $\sum_{D\in\mathcal{F}_{g+1}} L^{(\mu)}(\frac{1}{2},\chi_u)$ as g goes to infinity and q fixed (Theorem 3.1, Theorem 3.2), where \mathcal{I}_{g+1} and \mathcal{F}_{g+1} are the sets of rational functions which play the roles of \mathcal{H}_{2g+1} and \mathcal{H}_{2g+2} in even characteristic, respectively. In Appendix, we also consider the case of non-maximal orders, as was done in [1] in odd characteristic case.

2. A short background on function fields

Let $k=\mathbb{F}_q(t)$ be the rational function field with a constant field \mathbb{F}_q , where q is a power of 2, and $\mathbb{A}=\mathbb{F}_q[t]$. We denote by \mathbb{A}^+ the set of monic polynomials in \mathbb{A} and by \mathbb{P} the set of monic irreducible polynomials in \mathbb{A} . Any monic irreducible polynomial $P\in\mathbb{P}$ will be also called a prime polynomial throughout the paper. For any positive integer n, let $\mathbb{A}_n=\{f\in\mathbb{A}:\deg(f)=n\}$ and $\mathbb{A}_n^+=\mathbb{A}^+\cap\mathbb{A}_n$, $\mathbb{P}_n=\mathbb{P}\cap\mathbb{A}_n$.

The zeta function $\zeta_{\mathbb{A}}(s)$ of \mathbb{A} is defined to be the following infinite series:

(2.1)
$$\zeta_{\mathbb{A}}(s) = \sum_{f \in \mathbb{A}^+} \frac{1}{|f|^s} = \prod_{P \in \mathbb{P}} \left(1 - \frac{1}{|P|^s} \right)^{-1}, \quad \text{Re}(s) > 1,$$

where $|f| = q^{\deg(f)}$. It is well known that $\zeta_{\mathbb{A}}(s) = \frac{1}{1 - q^{1-s}}$.

In this section, we recall some basic facts on quadratic function field in even characteristic. For more details, we refer to $[6, \S 2.2, \S 2.3]$.

2.1. Quadratic function field in even characteristic

Any separable quadratic extension K of k is of the form $K=K_u=k(x_u)$, where x_u is a zero of $X^2+X+u=0$ for some $u\in k$. Fix an element $\xi\in\mathbb{F}_q\setminus\wp(\mathbb{F}_q)$, where $\wp:k\to k$ is the additive homomorphism defined by $\wp(x)=x^2+x$. We say that $u\in k$ is normalized if it is of the form

(2.2)
$$u = \sum_{i=1}^{m} \sum_{j=1}^{e_i} \frac{Q_{ij}}{P_i^{2j-1}} + \sum_{\ell=1}^{n} \alpha_{\ell} T^{2\ell-1} + \alpha,$$

where $P_i \in \mathbb{P}$ are distinct, $Q_{ij} \in \mathbb{A}$ with $\deg(Q_{ij}) < \deg(P_i)$, $Q_{ie_i} \neq 0$, $\alpha \in \{0, \xi\}$, $\alpha_{\ell} \in \mathbb{F}_q$ and $\alpha_n \neq 0$ for n > 0. Let $u \in k$ be normalized one as in (2.2). The infinite prime (1/t) of k splits, is inert or ramified in K_u according as n = 0 and $\alpha = 0$, n = 0 and $\alpha = \xi$, or n > 0. Then the field K_u is called

real, inert imaginary, or ramified imaginary, respectively. The discriminant \mathcal{D}_u of K_u is given by

$$D_u = \begin{cases} \prod_{i=1}^m P_i^{2e_i} & \text{if } n = 0, \\ \prod_{i=1}^m P_i^{2e_i} \cdot (1/t)^{2n} & \text{if } n > 0, \end{cases}$$

and the genus g_u of K_u is given by

(2.3)
$$g_u = \frac{1}{2} \deg(D_u) - 1.$$

For each $M \in \mathbb{A}^+$, write $r(M) = \prod_{P \mid M} P$ and $t(M) = M \cdot r(M)$. For $P \in \mathbb{P}$, let ν_P be the normalized valuation at P, that is, $\nu_P(M) = e$, where $P^e \mid M$. Let \mathcal{B} be the set of monic polynomials M such that $\nu_P(M) = 0$ or odd for any $P \in \mathbb{P}$, that is, t(M) is a square, and \mathcal{C} be the set of rational functions $\frac{D}{M} \in k$ such that $D \in \mathbb{A}, M \in \mathcal{B}$ and $\deg(D) < \deg(M)$. Also we let \mathcal{E} be the set of rational functions $\frac{D}{M} \in \mathcal{C}$ of the form

$$\frac{D}{M} = \sum_{P|M} \sum_{i=1}^{\ell_P} \frac{A_{P,i}}{P^{2i-1}},$$

where $\deg(A_{P,i}) < \deg(P)$ for any $P \mid M$ and for all $1 \le i \le \ell_P = \frac{1}{2}(\nu_P(M)+1)$. Let \mathcal{F} be the set of rational functions $\frac{D}{M} \in \mathcal{E}$ such that $A_{P,\ell_P} \ne 0$ for all $P \mid M$ and $\mathcal{F}' = \{u + \xi : u \in \mathcal{F}\}$. For any positive integer n, let

$$\mathcal{B}_n = \{ M \in \mathcal{B} : \deg(t(M)) = 2n \}, \quad \mathcal{C}_n = \left\{ \frac{D}{M} \in \mathcal{C} : M \in \mathcal{B}_n \right\},$$

$$\mathcal{E}_n = \mathcal{E} \cap \mathcal{C}_n, \quad \mathcal{F}_n = \mathcal{F} \cap \mathcal{E}_n, \quad \mathcal{F}'_n = \{ u + \xi : u \in \mathcal{F}_n \}.$$

Under the correspondence $u \mapsto K_u$, \mathcal{F}_n (resp. \mathcal{F}'_n) corresponds to the set of all real (resp. inert imaginary) separable quadratic extensions K_u of k with genus n-1. For any positive integer s, let \mathcal{G}_s be the set of polynomials $F(T) \in \mathbb{A}$ of the form

$$F(T) = \alpha + \sum_{i=1}^{s} \alpha_i T^{2i-1}$$
, where $\alpha \in \{0, \xi\}$, $\alpha_i \in \mathbb{F}_q$ and $\alpha_s \neq 0$.

Let $\mathcal{F}_0 = \{0\}$. For any integers $r \geq 0$ and $s \geq 1$, let $\mathcal{I}_{(r,s)} = \{u + F : u \in \mathcal{F}_r, F \in \mathcal{G}_s\}$. For any integer $n \geq 1$, let \mathcal{I}_n be the union of all $\mathcal{I}_{(r,s)}$, where (r,s) runs over all pairs of nonnegative integers such that s > 0 and r + s = n. Then, under the correspondence $u \mapsto K_u$, \mathcal{I}_n corresponds to the set of all ramified imaginary separable quadratic extensions K_u of k with genus n - 1.

We have that $\#\mathcal{B}_n = q^n$, $\#\mathcal{E}_n = q^{2n}$, $\#\mathcal{F}_n = \zeta_{\mathbb{A}}(2)^{-1}q^{2n}$ and $\#\mathcal{I}_n = 2\zeta_{\mathbb{A}}(2)^{-1}q^{2n-1}$ (see [6, Lemma 2.3]). For each $M \in \mathcal{B}$, let \mathcal{C}_M be the set of rational functions $u \in \mathcal{C}$ whose denominator divides M, $\mathcal{E}_M = \mathcal{E} \cap \mathcal{C}_M$ and $\mathcal{F}_M = \mathcal{F} \cap \mathcal{C}_M$. Note that \mathcal{E}_n (resp. \mathcal{F}_n) is the disjoint union of \mathcal{E}_M (resp. \mathcal{F}_M) with $M \in \mathcal{B}_n$. Let $\tilde{M} = \prod_{P|M} P^{(\nu_P(M)+1)/2}$. We also note that $\#\mathcal{E}_M = |\tilde{M}|$ and $\#\mathcal{F}_M = \Phi(\tilde{M})$, where $\Phi(\tilde{M}) = \#(\mathbb{A}/\tilde{M}\mathbb{A})^{\times}$.

2.2. Hasse symbol and *L*-functions

For any $u \in k$ whose denominator is not divisible by $P \in \mathbb{P}$, the Hasse symbol [u, P) with values in \mathbb{F}_2 is defined by

$$[u, P) = \begin{cases} 0 & \text{if } X^2 + X \equiv u \pmod{P} \text{ is solvable in } \mathbb{A}, \\ 1 & \text{otherwise.} \end{cases}$$

For $N \in \mathbb{A}$ prime to the denominator of u, if $N = sgn(N) \prod_{i=1}^{s} P_i^{e_i}$, where sgn(N) is the leading coefficient of N and $P_i \in \mathbb{P}$ are distinct and $e_i \geq 1$, we define [u, N) to be $\sum_{i=1}^{s} e_i[u, P_i)$.

For $u \in k$ and $0 \neq N \in \mathbb{A}$, we also define the quadratic symbol:

$$\left\{\frac{u}{N}\right\} = \begin{cases} (-1)^{[u,N)} & \text{if } N \text{ is prime to the denominator of } u, \\ 0 & \text{otherwise.} \end{cases}$$

This symbol is clearly additive in its first variable, and multiplicative in the second variable.

For the field K_u , we associate a character χ_u on \mathbb{A}^+ which is defined by $\chi_u(f) = \{\frac{u}{f}\}$, and let $L(s,\chi_u)$ be the *L*-function associated to the character χ_u : for $s \in \mathbb{C}$ with $\text{Re}(s) \geq 1$,

$$L(s, \chi_u) := \sum_{f \in \mathbb{A}^+} \frac{\chi_u(f)}{|f|^s} = \prod_{P \in \mathbb{P}} \left(1 - \frac{\chi_u(P)}{|P|^s}\right)^{-1}.$$

It is well known that $L(s,\chi_u)$ is a polynomial in q^{-s} . Letting $z=q^{-s}$, write $\mathcal{L}(z,\chi_u)=L(s,\chi_u)$. Then, $\mathcal{L}(z,\chi_u)$ is a polynomial in z of degree $2g_u+\frac{1}{2}(1+(-1)^{\varepsilon(u)})$, where $\varepsilon(u)=1$ if K_u is ramified imaginary and $\varepsilon(u)=0$ otherwise. Also we have that $\mathcal{L}(z,\chi_u)$ has a "trivial" zero at z=1 (resp. z=-1) if and only if K_u is real (resp. inert imaginary), so we can define the "completed" L-function as

(2.4)
$$\mathcal{L}^*(z,\chi_u) = \begin{cases} \mathcal{L}(z,\chi_u) & \text{if } K_u \text{ is ramified imaginary,} \\ (1-z)^{-1}\mathcal{L}(z,\chi_u) & \text{if } K_u \text{ is real,} \\ (1+z)^{-1}\mathcal{L}(z,\chi_u) & \text{if } K_u \text{ is inert imaginary,} \end{cases}$$

which is a polynomial of even degree $2g_u$ satisfying the functional equation

(2.5)
$$\mathcal{L}^*(z,\chi_u) = (qz^2)^{g_u} \mathcal{L}^*\left(\frac{1}{qz},\chi_u\right).$$

3. Statement of results

Let μ be a positive integer. Let $L^{(\mu)}(s,\chi_u)$ be the μ -th derivative of $L(s,\chi_u)$. For any integer $n\geq 0$, let $J_{\mu}(n)$ be the sum of the μ -th powers of the first n positive integers, i.e., $J_{\mu}(n)=\sum_{\ell=1}^n\ell^{\mu}$. Faulhaber's formula tell us that $J_{\mu}(n)$ can be rewritten as a polynomial in n of degree $\mu+1$ with zero constant term, that is, $J_{\mu}(n)=\sum_{m=1}^{\mu+1}j_{\mu}(m)n^m$.

Let

$$G(s) = \sum_{L \in \mathbb{A}^+} \frac{\mu(L)}{|L|^s \prod_{P \mid L} (1 + |P|)},$$

where $\mu(L)$ is the Möbius function for polynomials. So for any integer $m \geq 0$, we have

(3.1)
$$\frac{G^{(m)}(s)}{(-\ln q)^m} = \sum_{L \in \mathbb{A}^+} \frac{\mu(L) \deg(L)^m}{|L|^s \prod_{P|L} (1+|P|)}.$$

We are now ready to state two of the main results of this paper. The first theorem is the mean values of derivatives of Dirichlet L-functions associated to the imaginary quadratic function field K_u with $u \in \mathcal{I}_{g+1}$.

Theorem 3.1. Let μ be a fixed positive integer and q be a fixed power of 2. Assume that q > 2. Then we have

$$\begin{split} &\sum_{u \in \mathcal{I}_{g+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(\ln q)^{\mu}} \\ &= \frac{(-1)^{\mu} 2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_{\mu}([\frac{g}{2}]) + \frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}} \right) \\ &\quad + \frac{(-2)^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} \\ &\quad + \frac{2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu} \binom{\mu}{m} (-g)^{\mu-m} \left(G(1) J_{m}([\frac{g-1}{2}]) + \frac{G^{(m)}(1)}{(-\ln q)^{m}} \right) \\ &\quad - \frac{2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu} \binom{\mu}{m} (-g)^{\mu-m} \sum_{a=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{\mu} 2^{\frac{a}{2}} q^{\frac{3}{2}g}). \end{split}$$

We remark that the main term in Theorem 3.1 is two times of the one in [3, Theorem 3.1] since under the correspond $D\mapsto k(\sqrt{D}),\ \mathcal{H}_{2g+1}\cup\gamma\mathcal{H}_{2g+1}$ corresponds to the set of all ramified imaginary separable quadratic extensions K of k with genus g in odd characteristic case, where γ is any non-square element of \mathbb{F}_q^* .

The second theorem is the mean values of derivatives of Dirichlet L-functions associated to the real quadratic function field K_u with $u \in \mathcal{F}_{g+1}$.

Theorem 3.2. Let μ be a fixed positive integer and q be a fixed power of 2. Assume that q > 2. Then we have

$$\sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(-\ln q)^{\mu}}$$

$$= \frac{2^{\mu} q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_{\mu}([\frac{g}{2}]) + \frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}} \right) - \frac{2^{\mu} q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}}$$

$$-G(1)(g+1)^{\mu}q^{2g+\left[\frac{g}{2}\right]-\frac{g}{2}+\frac{3}{2}}-G(1)q^{2g+\left[\frac{g-1}{2}\right]-\frac{g-1}{2}+\frac{3}{2}}\sum_{m=0}^{\mu}\binom{\mu}{m}\frac{g^{\mu-m}\delta^{(m)}(\frac{1}{2})}{(-\ln q)^{m}}$$

$$+\frac{q^{2g+2}}{\zeta_{\mathbb{A}}(2)}\sum_{a+b+c=\mu}\frac{\mu!}{a!b!c!}\frac{(2g)^{a}(-2)^{c}\delta^{(b)}(\frac{1}{2})}{(-\ln q)^{b}}\left(G(1)J_{c}(\left[\frac{g-1}{2}\right])+\frac{G^{(c)}(1)}{(-\ln q)^{c}}\right)$$

$$-\frac{q^{2g+2}}{\zeta_{\mathbb{A}}(2)}\sum_{a+b+c=\mu}\frac{\mu!}{a!b!c!}\frac{(2g)^{a}(-2)^{c}\delta^{(b)}(\frac{1}{2})}{(-\ln q)^{b}}\sum_{a=1}^{c+1}j_{c}(a)\frac{G^{(a)}(1)}{(-\ln q)^{a}}+O(g^{\mu}2^{\frac{g}{2}}q^{\frac{3g}{2}}),$$

where $\delta(s) = \frac{1 - q^{-s}}{1 - q^{s-1}}$.

4. Main tools

In this section we present a few auxiliary results that will be used in the proof of the main theorems.

Lemma 4.1. For any $f \in \mathbb{A}_n^+$ with $n \leq g$, which is not a perfect square, we have

$$\sum_{u \in \mathcal{I}_{g+1}} \left\{ \frac{u}{f} \right\} \ll 2^{\frac{n}{2}} g q^g.$$

Proof. This is Proposition 3.20 in [6].

Lemma 4.2. Let n be a positive integer. For any $f \in \mathbb{A}_d^+$, which is not a perfect square, we have

$$\sum_{u \in \mathcal{F}_n} \left\{ \frac{u}{f} \right\} \ll 2^{\frac{d}{2}} q^n.$$

Proof. This is Proposition 3.15 in [6].

Lemma 4.3. Let $L \in \mathbb{A}^+$. Given any $\epsilon > 0$, we have

$$\sum_{\substack{f \in \mathbb{A}_n^+ \\ (f, L) = 1}} \Phi(f) = \frac{q^{2n}}{\zeta_{\mathbb{A}}(2)} \prod_{P|L} (1 + |P|^{-1})^{-1} + O\left(q^{(1+\epsilon)n}\right).$$

Proof. This is Lemma 3.3 in [6].

Applying Lemma 4.3 with $\epsilon = \frac{1}{2}$, we have the following corollary.

Corollary 4.4. We have

(4.1)
$$\sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{f \in \mathbb{A}_{\ell}^{+} \\ (f, L) = 1}} \Phi(f) = \frac{q^{2n+\ell}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} + O\left(q^{\frac{3n}{2}+\ell}\right).$$

Lemma 4.5. Let $m \ge 0$ be an integer. Then we have

$$\sum_{\substack{L \in \mathbb{A}^+ \\ \deg(L) > [\frac{g}{2}]}} \frac{\mu(L) \deg(L)^m}{|L| \prod_{P|L} (1+|P|)} = O(g^m q^{-\frac{g}{2}}).$$

Proof. This is Lemma 3.4 in [5].

Lemma 4.6. For $h \in \{g - 1, g\}$ and $m \in \{0, 1, ..., \mu\}$, we have

$$\begin{split} &\sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{s=1}^g \sum_{\substack{M \in \mathcal{B}_s \\ (M,L)=1}} \sum_{u \in \mathcal{I}_M} 1 \\ &= \frac{2^{m+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_m(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right) \\ &- \frac{2^{m+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m q^{\frac{3g}{2}}). \end{split}$$

Proof. Put

$$\mathcal{M}_{h,m}(\mu) = \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{s=1}^g \sum_{\substack{M \in \mathcal{B}_s \\ (M,L)=1}} \sum_{u \in \mathcal{I}_M} 1.$$

Since $\#\mathcal{I}_M = \frac{2}{\zeta_{\mathbb{A}}(2)}q^{g+1-s}\Phi(\tilde{M})$, we have

$$\mathcal{M}_{h,m}(\mu) = \frac{2^{m+1}q^{g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^m q^{-\ell} \sum_{s=1}^g q^{-s} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{\substack{\tilde{M} \in \mathbb{A}_s^+ \\ (\tilde{M},L)=1}} \Phi(\tilde{M}).$$

Then, by using (4.1), we can get

$$\mathcal{M}_{h,m}(\mu) = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^{m} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} + O(g^{m} q^{\frac{3g}{2}})$$

$$(4.2) \qquad = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} \sum_{\deg(D) \leq \ell \leq \left[\frac{h}{2}\right]} \ell^{m} + O(g^{m} q^{\frac{3g}{2}}).$$

For integer $m \geq 0$, recall that $J_m(n) = \sum_{\ell=1}^n \ell^m$, which is a polynomial in n of degree m+1 with zero constant term. Write $J_m(n) = \sum_{a=1}^{m+1} j_m(a) n^a$. Then we have

(4.3)
$$\sum_{\deg(L) \le \ell \le \left[\frac{h}{2}\right]} \ell^m = J_m(\left[\frac{h}{2}\right]) + \deg(L)^m - \sum_{a=1}^{m+1} j_m(a) \deg(L)^a.$$

Inserting (4.3) into (4.2), we have

$$\mathcal{M}_{h,m}(\mu) = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} J_m(\left[\frac{h}{2}\right]) \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)}$$

$$+ \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D) \deg(L)^m}{|D| \prod_{P|D} (1+|P|)}$$

$$- \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D) \deg(L)^a}{|D| \prod_{P|D} (1+|P|)} + O(g^m q^{\frac{3g}{2}}).$$

$$(4.4)$$

Then, from (4.4), by using Lemma 4.5, we get that

$$\mathcal{M}_{h,m}(\mu) = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} J_m(\left[\frac{h}{2}\right]) \sum_{D \in \mathbb{A}^+} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} + \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}^+} \frac{\mu(D) \deg(L)^m}{|D| \prod_{P|D} (1+|P|)} - \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \sum_{D \in \mathbb{A}^+} \frac{\mu(D) \deg(L)^a}{|D| \prod_{P|D} (1+|P|)} + O(g^m q^{\frac{3g}{2}}).$$

$$(4.5)$$

We also recall that for any integer $n \geq 0$, we have

(4.6)
$$\frac{G^{(n)}(s)}{(-\ln q)^n} = \sum_{D \in \mathbb{A}^+} \frac{\mu(D) \deg(D)^n}{|D|^s \prod_{P|D} (1+|P|)}.$$

Finally, by (4.5) and (4.6), we get

$$\mathcal{M}_{h,m}(\mu) = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_m(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right) - \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m q^{\frac{3g}{2}}).$$

Lemma 4.7. For $h \in \{g - 1, g\}$ and $m \in \{0, 1, ..., \mu\}$, we have

$$\sum_{\ell=0}^{\lfloor \frac{n}{2} \rfloor} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L)=1}} \sum_{u \in \mathcal{F}_M} 1 = \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_m(\lfloor \frac{h}{2} \rfloor) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right) - \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m q^{\frac{3g}{2}}).$$

Proof. Put

$$\mathcal{N}_{h,m}(\mu) = \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L)=1}} \sum_{u \in \mathcal{F}_M} 1.$$

Since $\#\mathcal{F}_M = \Phi(\tilde{M})$, we have

$$\mathcal{N}_{h,m}(\mu) = \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{\substack{\tilde{M} \in \mathbb{A}_{g+1}^+ \\ (\tilde{M},L)=1}} \Phi(\tilde{M}).$$

Then, by using (4.1), we can get

$$\mathcal{N}_{h,m}(\mu) = \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \ell^m \sum_{D \in \mathbb{A}_{\leq \ell}^+} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} + O(g^m q^{\frac{3g}{2}})$$

$$(4.7) \qquad = \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}^+} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} \sum_{\deg(D) \leq \ell \leq \left[\frac{h}{2}\right]} \ell^m + O(g^m q^{\frac{3g}{2}}).$$

Inserting (4.3) into (4.7), we have

$$\mathcal{N}_{h,m}(\mu) = \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} J_{m}(\left[\frac{h}{2}\right]) \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)}
+ \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D) \deg(L)^{m}}{|D| \prod_{P|D} (1+|P|)}
(4.8) \qquad - \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D) \deg(L)^{a}}{|D| \prod_{P|D} (1+|P|)} + O(g^{m}q^{\frac{3g}{2}}).$$

Then, from (4.8), by using Lemma 4.5, we get that

$$\mathcal{N}_{h,m}(\mu) = \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} J_{m}(\left[\frac{h}{2}\right]) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)}
+ \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \deg(L)^{m}}{|D| \prod_{P|D} (1+|P|)}
(4.9) \qquad - \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_{m}(a) \sum_{D \in \mathbb{A}^{+}} \frac{\mu(D) \deg(L)^{a}}{|D| \prod_{P|D} (1+|P|)} + O(g^{m}q^{\frac{3g}{2}}).$$

Finally, by (4.9) and (4.6), we get

$$\mathcal{N}_{h,m}(\mu) = \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_m(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right) - \frac{2^m q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m q^{\frac{3g}{2}}).$$

Lemma 4.8. For $h \in \{g - 1, g\}$, we have

$$q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L)=1}} \sum_{u \in \mathcal{F}_{M}} 1 = G(1)q^{2g+\left[\frac{h}{2}\right]-\frac{h}{2}+\frac{3}{2}} + O(gq^{\frac{3g}{2}}).$$

Proof. Put

$$\mathcal{L}_{h,m}(\mu) = q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L)=1}} \sum_{u \in \mathcal{F}_{M}} 1.$$

Since $\#\mathcal{F}_M = \Phi(\tilde{M})$, we have

$$\mathcal{L}_{h,m}(\mu) = q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\tilde{M} \in \mathbb{A}_{g+1}^{+}} \Phi(\tilde{M}).$$

Then, by using (4.1), we can get

$$\mathcal{L}_{h,m}(\mu) = \frac{q^{2g - \frac{h}{2} + \frac{3}{2}}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} q^{\ell} \sum_{D \in \mathbb{A}_{\leq \ell}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1 + |P|)} + O(q^{\frac{3g}{2}})$$

$$(4.10) \qquad = \frac{q^{2g - \frac{h}{2} + \frac{3}{2}}}{\zeta_{\mathbb{A}}(2)} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}^{+}} \frac{\mu(D)}{|D| \prod_{P|D} (1 + |P|)} \sum_{\deg(D) \leq \ell \leq \left[\frac{h}{2}\right]} q^{\ell} + O(q^{\frac{3g}{2}}).$$

Since

$$\sum_{\deg(D) \leq \ell \leq [\frac{h}{2}]} q^\ell = \zeta_{\mathbb{A}}(2) \left(q^{[\frac{h}{2}]} - q^{\deg(D) - 1} \right),$$

we have

$$\mathcal{L}_{h,m}(\mu) = q^{2g + \left[\frac{h}{2}\right] - \frac{h}{2} + \frac{3}{2}} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D)}{|D| \prod_{P|D} (1 + |P|)}$$

$$- q^{2g - \frac{h}{2} + \frac{1}{2}} \sum_{D \in \mathbb{A}_{\leq \left[\frac{h}{2}\right]}} \frac{\mu(D)}{\prod_{P|D} (1 + |P|)} + O(q^{\frac{3g}{2}}).$$

By Lemma 4.5 and (4.6), we have

(4.12)
$$\sum_{D \in \mathbb{A}_{\leq \lfloor \frac{h}{2} \rfloor}} \frac{\mu(D)}{|D| \prod_{P|D} (1+|P|)} = G(1) + O(q^{-\frac{g}{2}}).$$

We also have

(4.13)
$$\left| \sum_{D \in \mathbb{A}_{\leq \lfloor \frac{h}{2} \rfloor}^+} \frac{\mu(D)}{\prod_{P|D} (1+|P|)} \right| \ll \sum_{\ell=0}^{\lfloor \frac{h}{2} \rfloor} \sum_{D \in \mathcal{H}_{\ell}} \frac{1}{|D|} \ll g.$$

By inserting (4.12) and (4.13) into (4.11), we get

$$\mathcal{L}_{h,m}(\mu) = G(1)q^{2g + [\frac{h}{2}] - \frac{h}{2} + \frac{3}{2}} + O(gq^{\frac{3g}{2}}).$$

5. Proof of Theorem 3.1

In this section we give a proof of Theorem 3.1.

5.1. μ -th derivative of $L(s, \chi_u)$ for $u \in \mathcal{I}_{q+1}$

Let $u \in \mathcal{I}_{g+1}$. Then $L(s, \chi_u)$ can be represented as

$$L(s,\chi_u) = \sum_{f \in \mathbb{A}_{\leq g}^+} \chi_u(f)|f|^{-s} + q^{(1-2s)g} \sum_{f \in \mathbb{A}_{\leq g-1}^+} \chi_u(f)|f|^{s-1}.$$

Lemma 5.1. Let $u \in \mathcal{I}_{g+1}$. For any integer $\mu \geq 0$, we have

$$\frac{L^{(\mu)}(s,\chi_u)}{(\ln q)^{\mu}} = \sum_{n=0}^g (-n)^{\mu} A_n(u) q^{-ns}
+ q^{(1-2s)g} \sum_{m=0}^{\mu} {\mu \choose m} (-2g)^{\mu-m} \sum_{n=0}^{g-1} n^m A_n(u) q^{(s-1)n},$$

where $A_n(u) = \sum_{f \in \mathbb{A}_n^+} \chi_u(f)$. In particular, we also have

$$\frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(\ln q)^{\mu}} = \sum_{n=0}^{g} (-n)^{\mu} A_n(u) q^{-\frac{n}{2}} + \sum_{m=0}^{\mu} {\mu \choose m} (-2g)^{\mu-m} \sum_{n=0}^{g-1} n^m A_n(u) q^{-\frac{n}{2}}.$$
(5.1)

Proof. See the proof of Lemma 5.1 in [3].

Write

$$S_{h,m}^{o}(\mu) = \sum_{n=0}^{h} n^m q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_n^+} \sum_{u \in \mathcal{I}_{g+1}} \chi_u(f)$$

for $h \in \{g-1,g\}$ and $m \in \{0,1,\ldots,\mu\}$. Then, by (5.1), we can write

$$\sum_{u \in \mathcal{I}_{g,+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(\ln q)^{\mu}} = (-1)^{\mu} \mathcal{S}_{g,\mu}^{\circ}(\mu) + \sum_{m=0}^{\mu} \binom{\mu}{m} (-2g)^{\mu-m} \mathcal{S}_{g-1,m}^{\circ}(\mu).$$

5.2. Averaging $\mathcal{S}_{h,m}^{\mathrm{o}}(\mu)$

In this subsection we obtain an asymptotic formula of $\mathcal{S}_{h,m}^{o}(\mu)$.

Proposition 5.2. For $h \in \{g-1,g\}$ and $m \in \{0,1,\ldots,\mu\}$, we have

$$S_{h,m}^{o}(\mu) = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_m(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right) - \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{g=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m 2^{\frac{g}{2}} q^{\frac{3}{2}g}).$$

Proof. We split the sum over f with f being a perfect square of a polynomial or not. Then we can write

$$S_{h,m}^{o}(\mu) = S_{h,m}^{o}(\mu)_{\square} + S_{h,m}^{o}(\mu)_{\neq \square},$$

where

(5.3)
$$S_{h,m}^{o}(\mu)_{\square} = \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f = \square}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)$$

and

(5.4)
$$S_{h,m}^{o}(\mu)_{\neq \square} = \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f).$$

For the contribution of non-squares, from (5.4) by using Lemma 4.1, we have

$$|\mathcal{S}_{h,m}^{o}(\mu)_{\neq\square}| \ll \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \left| \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f) \right|$$

$$\ll q q^{g} \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)$$

$$\approx q q^{g} \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)$$

$$\approx q q^{g} \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{u \in \mathcal{I}_{g+1}} \chi_{u}(f)$$

(5.5)
$$\ll gq^g \sum_{n=0}^h n^m q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_n^+} 2^{\frac{n}{2}} \ll g^m 2^{\frac{g}{2}} q^{\frac{3}{2}g}.$$

Now, we consider the contribution of squares. We can write

$$S_{h,m}^{o}(\mu)_{\square} = \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f = \square}} \sum_{s=0}^{g} \sum_{u \in \mathcal{I}_{(s,g+1-s)}} \chi_{u}(f).$$

Note that $\mathcal{I}_{(0,g+1)} = \mathcal{G}_{g+1}$. For $1 \leq s \leq g$ and $M \in \mathcal{B}_s$, let $\mathcal{I}_M = \{v + F : v \in \mathcal{F}_M \text{ and } F \in \mathcal{G}_{g+1-s}\}$. Then $\mathcal{I}_{(s,g+1-s)}$ is the disjoint union of the \mathcal{I}_M 's, where M runs over \mathcal{B}_r . Hence, we see that

$$S_{h,m}^{o}(\mu)_{\square} = \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{F \in \mathcal{G}_{g+1}} \left\{ \frac{F}{L^{2}} \right\}$$

$$+ \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{M \in \mathcal{B}_{s}} \sum_{u \in \mathcal{I}_{M}} \left\{ \frac{u}{L^{2}} \right\}$$

$$(5.6) \qquad = \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{F \in \mathcal{G}_{g+1}} 1 + \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{s=1}^{g} \sum_{\substack{M \in \mathcal{B}_{s} \\ (M,L)=1}} \sum_{u \in \mathcal{I}_{M}} 1.$$

Since $\#\mathcal{G}_{g+1} = \frac{2}{\zeta_{\mathbb{A}}(2)}q^{g+1}$, we have

(5.7)
$$\sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}^+_+} \sum_{F \in \mathcal{G}_{g+1}} 1 = \frac{2q^{g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m \ll g^m q^g.$$

We also have, by Lemma 4.6, that

$$\sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^m q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^+} \sum_{s=1}^g \sum_{\substack{M \in \mathcal{B}_s \\ (M,L)=1}} \sum_{u \in \mathcal{I}_M} 1$$

$$= \frac{2^{m+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_m(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right)$$

$$- \frac{2^{m+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{g=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^m q^{\frac{3g}{2}}).$$
(5.8)

By inserting (5.7) and (5.8) into (5.6), we get

$$S_{h,m}^{o}(\mu)_{\square} = \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_{m}(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^{m}} \right) - \frac{2^{m+1}q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{g=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{m}q^{\frac{3g}{2}}).$$
(5.9)

Finally, combining (5.5) and (5.9), we obtain the result.

5.3. Completing the proof

Recall that

$$(5.10) \quad \sum_{u \in \mathcal{I}_{g+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(\ln q)^{\mu}} = (-1)^{\mu} \mathcal{S}_{g,\mu}^{\circ}(\mu) + \sum_{m=0}^{\mu} {\mu \choose m} (-2g)^{\mu-m} \mathcal{S}_{g-1,m}^{\circ}(\mu).$$

By (5.9) with h = g and $m = \mu$, we have that

$$(-1)^{\mu} \mathcal{S}_{g,\mu}^{o}(\mu) = \frac{(-1)^{\mu} 2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \left(G(1) J_{\mu}(\left[\frac{g}{2}\right]) + \frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}} \right) + \frac{(-2)^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{a=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{\mu} 2^{\frac{a}{2}} q^{\frac{3}{2}g}).$$

We also, by (5.9), have that

$$\sum_{m=0}^{\mu} {\mu \choose m} (-2g)^{\mu-m} \mathcal{S}_{g-1,m}^{o}(\mu)
= \frac{2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu} {\mu \choose m} (-g)^{\mu-m} \left(G(1) J_m(\left[\frac{g-1}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^m} \right)
(5.12) \qquad - \frac{2^{\mu+1} q^{2g+1}}{\zeta_{\mathbb{A}}(2)} \sum_{m=0}^{\mu} {\mu \choose m} (-g)^{\mu-m} \sum_{a=1}^{m+1} j_m(a) \frac{G^{(a)}(1)}{(-\ln q)^a} + O(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3}{2}g}).$$

By inserting (5.11) and (5.12) into (5.10), we complete the proof.

6. Proof of Theorem 3.2

In this section we give a proof of Theorem 3.2.

6.1. μ -th derivative of $L(s, \chi_u)$ for $u \in \mathcal{F}_{g+1}$

For $u \in \mathcal{F}_{g+1}$, $L(s, \chi_u)$ can be represented as

$$L(s, \chi_u) = \sum_{f \in \mathbb{A}_{\leq g}^+} \chi_u(f)|f|^{-s} - q^{-(g+1)s} \sum_{f \in \mathbb{A}_{\leq g}^+} \chi_u(f)$$
$$+ q^{(1-2s)g} \delta(s) \sum_{f \in \mathbb{A}_{\leq g-1}^+} \chi_u(f)|f|^{s-1} - q^{-gs} \delta(s) \sum_{f \in \mathbb{A}_{\leq g-1}^+} \chi_u(f),$$

where $\delta(s) = \frac{1 - q^{-s}}{1 - q^{s-1}}$.

Lemma 6.1. Let $u \in \mathcal{F}_{g+1}$. For any integer $\mu \geq 0$, we have

$$\begin{split} \frac{L^{(\mu)}(s,\chi_u)}{(-\ln q)^{\mu}} &= \sum_{n=0}^g n^{\mu} A_n(u) q^{-ns} - (g+1)^{\mu} q^{-(g+1)s} \sum_{n=0}^g A_n(u) \\ &+ q^{(1-2s)g} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2g)^a \delta^{(b)}(s)}{(-\ln q)^b} \sum_{n=0}^{g-1} (-n)^c A_n(u) q^{n(s-1)} \\ &- q^{-gs} \sum_{m=0}^{\mu} \binom{\mu}{m} \frac{g^{\mu-m} \delta^{(m)}(s)}{(-\ln q)^m} \sum_{n=0}^{g-1} A_n(u), \end{split}$$

where $A_n(u) = \sum_{f \in \mathbb{A}_n^+} \chi_u(f)$. In particular, we also have

$$\frac{L^{(\mu)}(\frac{1}{2},\chi_u)}{(-\ln q)^{\mu}} = \sum_{n=0}^{g} n^{\mu} A_n(u) q^{-\frac{n}{2}} - (g+1)^{\mu} q^{-\frac{g+1}{2}} \sum_{n=0}^{g} A_n(u)
+ \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2g)^a \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \sum_{n=0}^{g-1} (-n)^c A_n(u) q^{-\frac{n}{2}}
- q^{-\frac{g}{2}} \sum_{m=0}^{\mu} {\mu \choose m} \frac{g^{\mu-m} \delta^{(m)}(\frac{1}{2})}{(-\ln q)^m} \sum_{n=0}^{g-1} A_n(u).$$
(6.1)

Proof. See the proof of Lemma 6.1 in [3].

Write

$$S_{h,m}^{e}(\mu) = \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_{+}^{+}} \sum_{u \in \mathcal{F}_{q+1}} \chi_{u}(f)$$

and

$$\mathcal{T}_h(\mu) = q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{f \in \mathbb{A}_n^+} \sum_{u \in \mathcal{F}_{g+1}} \chi_u(f)$$

for $h \in \{g-1,g\}$ and $m \in \{0,1,\ldots,\mu\}$. Then, by (6.1), we can write

$$\sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(-\ln q)^{\mu}} = \mathcal{S}_{g,\mu}^{e}(\mu) - (g+1)^{\mu} \mathcal{T}_g(\mu)$$

$$+ \sum_{a+b+c=\mu} \frac{(-1)^c \mu!}{a!b!c!} \frac{(2g)^a \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \mathcal{S}_{g-1,c}^{e}(\mu)$$

$$- \sum_{a=0}^{\mu} {\mu \choose m} \frac{g^{\mu-m} \delta^{(m)}(\frac{1}{2})}{(-\ln q)^m} \mathcal{T}_{g-1}(\mu).$$

6.2. Averaging $\mathcal{S}_{h,m}^{\mathrm{e}}(\mu)$

In this subsection we obtain an asymptotic formula of $\mathcal{S}_{h,m}^{\mathrm{e}}(\mu)$.

Proposition 6.2. For $h \in \{g - 1, g\}$ and $m \in \{0, 1, ..., \mu\}$, we have

$$\mathcal{S}_{h,m}^{e}(\mu) = \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_{m}(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^{m}} \right) - \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{g=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{m}2^{\frac{g}{2}}q^{\frac{3}{2}g}).$$

Proof. We can write $S_{h,m}^{e}(\mu) = S_{h,m}^{e}(\mu)_{\square} + S_{h,m}^{e}(\mu)_{\neq \square}$, where

(6.3)
$$\mathcal{S}_{h,m}^{\mathbf{e}}(\mu)_{\square} = \sum_{n=0}^{h} n^m q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_n^+ \\ f = \square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_u(f)$$

and

(6.4)
$$\mathcal{S}_{h,m}^{\mathbf{e}}(\mu)_{\neq\square} = \sum_{n=0}^{h} n^m q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_+^+ \\ t \neq \Gamma}} \sum_{u \in \mathcal{F}_{g+1}} \chi_u(f).$$

For the contribution of non-squares, from (6.4) by using Lemma 4.2, we have

$$|\mathcal{S}_{h,m}^{e}(\mu)_{\neq\square}| \ll \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \left| \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f) \right|$$

(6.5)
$$\ll q^g \sum_{n=0}^h n^m q^{-\frac{n}{2}} \sum_{f \in \mathbb{A}_n^+} 2^{\frac{n}{2}} \ll g^m 2^{\frac{g}{2}} q^{\frac{3}{2}g}.$$

Now, we consider the contribution of square parts. For each $M \in \mathcal{B}_{g+1}$, let \mathcal{F}_M be the set of rational functions $u \in \mathcal{F}_{g+1}$ whose denominator is M. Then \mathcal{F}_{g+1} is a disjoint union of the \mathcal{F}_M 's, where M runs over \mathcal{B}_{g+1} . Hence, we can write

$$S_{h,m}^{e}(\mu)_{\square} = \sum_{n=0}^{h} n^{m} q^{-\frac{n}{2}} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f = \square}} \sum_{M \in \mathcal{B}_{g+1}} \sum_{u \in \mathcal{F}_{M}} \chi_{u}(f)$$
$$= \sum_{\ell=0}^{\left[\frac{h}{2}\right]} (2\ell)^{m} q^{-\ell} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L) = 1}} \sum_{u \in \mathcal{F}_{M}} 1.$$

Then, by Lemma 4.7, we have

$$\mathcal{S}_{h,m}^{e}(\mu)_{\square} = \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_{m}(\left[\frac{h}{2}\right]) + \frac{G^{(m)}(1)}{(-\ln q)^{m}} \right) - \frac{2^{m}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{i=1}^{m+1} j_{m}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{m}q^{\frac{3g}{2}}).$$
(6.6)

Finally, combining (6.5) and (6.6), we obtain the result.

6.3. Averaging $\mathcal{T}_h(\mu)$

In this subsection we obtain an asymptotic formula of $\mathcal{T}_h(\mu)$.

Proposition 6.3. For $h \in \{g-1, g\}$, we have

(6.7)
$$\mathcal{T}_h(\mu) = G(1)q^{2g + [\frac{h}{2}] - \frac{h}{2} + \frac{3}{2}} + O(2^{\frac{g}{2}}q^{\frac{3}{2}g}).$$

Proof. We can write $\mathcal{T}_h(\mu) = \mathcal{T}_h(\mu)_{\square} + \mathcal{T}_h(\mu)_{\neq \square}$, where

(6.8)
$$\mathcal{T}_{h}(\mu)_{\square} = q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f = \square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f)$$

and

(6.9)
$$\mathcal{T}_{h}(\mu)_{\neq \square} = q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f \neq \square}} \sum_{u \in \mathcal{F}_{g+1}} \chi_{u}(f).$$

For the contribution of non-squares, from (6.9) by using Lemma 4.2, we have

$$|\mathcal{T}_h(\mu)_{\neq\square}| \ll q^{-\frac{h+1}{2}} \sum_{n=0}^h \sum_{\substack{f \in \mathbb{A}_n^+ \\ f \neq \square}} \left| \sum_{u \in \mathcal{F}_{g+1}} \chi_u(f) \right|$$

$$\ll q^{g-\frac{h+1}{2}} \sum_{n=0}^h \sum_{\substack{f \in \mathbb{A}_n^+ \\ f \neq \square}} 2^{\frac{n}{2}} \ll 2^{\frac{g}{2}} q^{\frac{3}{2}g}.$$

Now, we consider the contribution of square parts. Since \mathcal{F}_{g+1} is a disjoint union of the \mathcal{F}_M 's, where M runs over \mathcal{B}_{g+1} , we can write

$$\mathcal{T}_{h}(\mu)_{\square} = q^{-\frac{h+1}{2}} \sum_{n=0}^{h} \sum_{\substack{f \in \mathbb{A}_{n}^{+} \\ f = \square}} \sum_{M \in \mathcal{B}_{g+1}} \sum_{u \in \mathcal{F}_{M}} \chi_{u}(f) = q^{-\frac{h+1}{2}} \sum_{\ell=0}^{\left[\frac{h}{2}\right]} \sum_{L \in \mathbb{A}_{\ell}^{+}} \sum_{\substack{M \in \mathcal{B}_{g+1} \\ (M,L) = 1}} \sum_{u \in \mathcal{F}_{M}} 1.$$

Then, by Lemma 4.8, we have

(6.11)
$$\mathcal{T}_h(r)_{\square} = G(1)q^{2g + [\frac{h}{2}] - \frac{h}{2} + \frac{3}{2}} + O(gq^{\frac{3g}{2}}).$$

Finally, combining (6.10) and (6.11), we obtain the result.

6.4. Completing the proof

Recall that

$$\sum_{u \in \mathcal{F}_{g+1}} \frac{L^{(\mu)}(\frac{1}{2}, \chi_u)}{(-\ln q)^{\mu}} = \mathcal{S}_{g,\mu}^{e}(\mu) - (g+1)^{\mu} \mathcal{T}_g(\mu)
+ \sum_{a+b+c=\mu} \frac{(-1)^c \mu!}{a!b!c!} \frac{(2g)^a \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \mathcal{S}_{g-1,c}^{e}(\mu)
- \sum_{m=0}^{\mu} {\mu \choose m} \frac{g^{\mu-m} \delta^{(m)}(\frac{1}{2})}{(-\ln q)^m} \mathcal{T}_{g-1}(\mu).$$
(6.12)

By using (6.2), we have that

$$S_{g,\mu}^{e}(\mu) = \frac{2^{\mu}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \left(G(1)J_{\mu}(\left[\frac{g}{2}\right]) + \frac{G^{(\mu)}(1)}{(-\ln q)^{\mu}} \right) - \frac{2^{\mu}q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{i=1}^{\mu+1} j_{\mu}(a) \frac{G^{(a)}(1)}{(-\ln q)^{a}} + O(g^{\mu}2^{\frac{g}{2}}q^{\frac{3g}{2}})$$
(6.13)

and

$$\begin{split} & \sum_{a+b+c=\mu} \frac{(-1)^c \mu!}{a!b!c!} \frac{(2g)^a \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \mathcal{S}^{\mathrm{e}}_{g-1,c}(\mu) \\ & = \frac{q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2g)^a (-2)^c \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \left(G(1) J_c([\frac{g-1}{2}]) + \frac{G^{(c)}(1)}{(-\ln q)^c} \right) \\ & - \frac{q^{2g+2}}{\zeta_{\mathbb{A}}(2)} \sum_{a+b+c=\mu} \frac{\mu!}{a!b!c!} \frac{(2g)^a (-2)^c \delta^{(b)}(\frac{1}{2})}{(-\ln q)^b} \sum_{a=1}^{c+1} j_c(a) \frac{G^{(a)}(1)}{(-\ln q)^a} \end{split}$$

$$(6.14) + O(q^{\mu} 2^{\frac{g}{2}} q^{\frac{3g}{2}}).$$

By using (6.7), we also have

$$(6.15) (g+1)^{\mu} \mathcal{T}_g(\mu) = G(1)(g+1)^{\mu} q^{2g+\left[\frac{g}{2}\right] - \frac{g}{2} + \frac{3}{2}} + O(g^{\mu} 2^{\frac{g}{2}} q^{\frac{3g}{2}})$$

and

$$\sum_{m=0}^{\mu} {\mu \choose m} \frac{g^{\mu-m} \delta^{(m)}(\frac{1}{2})}{(-\ln q)^m} \mathcal{T}_{g-1}(\mu)$$

$$(6.16) \qquad = G(1)q^{2g+\left[\frac{g-1}{2}\right]-\frac{g-1}{2}+\frac{3}{2}} \sum_{m=0}^{\mu} \binom{\mu}{m} \frac{g^{\mu-m}\delta^{(m)}(\frac{1}{2})}{(-\ln q)^m} + O(g^{\mu}2^{\frac{g}{2}}q^{\frac{3g}{2}}).$$

By inserting (6.13), (6.14), (6.15) and (6.16) into (6.12), we complete the proof.

7. Appendix: Non-maximal order case

In this appendix, we consider the case of non-maximal orders, as was done in [1] in odd characteristic case. We use the same notations as in [7], with minor changes.

Let \mathcal{D} be the set of rational functions $\frac{D}{M^2} \in k$ such that $M \in \mathbb{A}^+$, $\gcd(D, M) = 1$, $\frac{D}{M^2} \notin \wp(k)$, $\operatorname{sgn}(D) = \xi$ if $\deg(D) = 2 \deg(M)$ and $2 \nmid \deg(D)$ if $\deg(D) > 2 \deg(M)$, where $\operatorname{sgn}(D)$ denotes the leading coefficient of D. Define \sim on \mathcal{D} by

$$\frac{D}{M^2} \sim \frac{D'}{{M'}^2}$$
 if $M = M'$ and $\frac{D}{M^2} + \frac{D'}{{M'}^2} \in \wp(k)$.

Then \sim is an equivalence relation and let [(D, M)] be the equivalence class containing $\frac{D}{M^2}$. Let

$$\mathcal{D}_m = \left\{ [(D, M)] : M \in \mathbb{A}_m^+, \deg(D) < 2m \right\},\,$$

$$\mathcal{D'}_m = \left\{ [(D, M)] : M \in \mathbb{A}_m^+, \deg(D) = 2m \right\},$$

$$\tilde{\mathcal{D}}_{\ell, d} = \left\{ [(D, M)] : M \in \mathbb{A}_\ell^+, \deg(D) = 2\ell + 2d + 1 \right\}$$

and

$$\tilde{\mathcal{D}}_m = \bigcup_{\ell+d=m-1} \tilde{\mathcal{D}}_{\ell,d}.$$

It is shown in [7] that

$$\#\mathcal{D}_m = \#\mathcal{D'}_m = q^{2m} - q^m, \quad \#\tilde{\mathcal{D}}_{\ell,d} = 2(q-1)q^{2\ell+d}$$
 and $\#\tilde{\mathcal{D}}_m = 2(q^{2m-1} - q^{m-1}).$

Note that $q^{2m}-q^m$ is the number of monic polynomials of degree 2m which is not a square. The reason for 2 in $\#\tilde{\mathcal{D}}_m$ is as follows; Write $D=AM^2+B$ with $\deg(B)<2\deg(M)$. 2 is the factor that whether the constant term of A is contained in $\wp(k)$ or not, just like, when $\deg(D)$ is odd, whether $\operatorname{sgn}(D)$ is a square or not in odd characteristic case. We also note that the element $[(D,M)]\in\mathcal{D}_m$ (resp. \mathcal{D}'_m , resp. $\tilde{\mathcal{D}}_m$) corresponds to monic nonsquare polynomial M of degree 2m (resp. γM , M monic polynomial of degree 2m for γ a generator of \mathbb{F}_q^* , resp. polynomial M of degree 2m-1 with $\operatorname{sgn}(M)=1$ or γ) in odd characteristic case.

Let

$$\sigma_n(D, M) = \sum_{N \in \mathbb{A}_+^{\perp}} \left\{ \frac{D/M^2}{N} \right\}.$$

Then

$$L(s,\chi_{(D,M)}) = \sum_{n} \sigma_n(D,M) q^{-ns}.$$

Let

$$S_{m,n} = \sum_{[(D,M)]\in\mathcal{D}_m} \sigma_n(D,M), \quad S'_{m,n} = \sum_{[(D,M)]\in\mathcal{D}'_m} \sigma_n(D,M),$$

$$\tilde{S}_{\ell,d,n} = \sum_{[(D,M)] \in \tilde{\mathcal{D}}_{\ell,d}} \sigma_n(D,M) \quad \text{ and } \quad \tilde{S}_{m,n} = \sum_{[(D,M)] \in \tilde{\mathcal{D}}_m} \sigma_n(D,M).$$

It is shown in [7, Proposition 4.3, Fact 4.8 and Proposition 4.13] that

$$S_{m,n} = S'_{m,n} = \tilde{S}_{m,n} = 0$$
, if $n \ge 2m$,

and, for n < 2m,

$$(7.1) S_{m,n} = q^m \Phi(\frac{n}{2}, m) - \Phi(n, m) = \Phi(\frac{n}{2}, 2m) - \Phi(n, m),$$

$$(7.2) S'_{m,n} = q^m \Phi(\frac{n}{2}, m) - (-1)^n \Phi(n, m) = \Phi(\frac{n}{2}, 2m) - (-1)^n \Phi(n, m),$$

(7.3)
$$\tilde{S}_{\ell,d,n} = 2(q-1)q^{\ell+d}\Phi(\frac{n}{2},\ell)$$
 and $\tilde{S}_{m,n} = 2(q-1)q^{m-1}\sum_{\ell=0}^{m-1}\Phi(\frac{n}{2},\ell),$

where

$$\Phi(a,m) = \begin{cases} q^m & \text{if } a = 0, \\ \frac{q^{m+a}}{\zeta_{\mathbb{A}}(2)} & \text{if } a \neq 0, \text{ an integer,} \\ 0 & \text{if } a \text{ is not an integer,} \end{cases}$$

as defined in [7, Proposition 4.4] and [1, Proposition 2.2].

Remark 7.1. We note that $S_{m,n}$ is equal to

$$\sum_{M \in \mathbb{A}_{2m}^+} \sum_{N \in \mathbb{A}_n^+} \chi_M(N),$$

and $S'_{m,n}$ is equal to

$$\sum_{M \in \gamma \mathbb{A}_{2m}^+} \sum_{N \in \mathbb{A}_n^+} \chi_M(N)$$

in odd characteristic case [1, §4, §5]. Also one can see easily ([1, §3]) that $\tilde{S}_{m,n}$ is equal to

$$2\sum_{M\in\mathbb{A}_{2m-1}^+}\sum_{N\in\mathbb{A}_n^+}\chi_M(N)+O(\delta_nq^m),$$

where δ_n is 1 or 0 according to n is even or odd.

Let B_j be the jth Bernoulli number and $\Phi(z, s, \alpha)$ be the Lerch transcendent function given by

$$\Phi(z,s,\alpha) = \sum_{n=0}^{\infty} \frac{z^n}{(n+\alpha)^s},$$

and $Li_s(z)$ be the polylogarithm function given by

$$Li_s(z) = \sum_{n=1}^{\infty} \frac{z^n}{n^s}.$$

Lemma 7.2 (Faulharber's formula ([1], (2.5), (2.6), (2.7))). We have

$$\sum_{n=1}^{m} n^{\mu} = \frac{1}{\mu+1} \sum_{j=0}^{\mu} (-1)^{j} {\mu+1 \choose j} B_{j} m^{\mu+1-j},$$

$$\sum_{n=1}^{2m-1} n^{\mu} q^{\frac{n}{2}} = -q^m \Phi(\sqrt{q}, -\mu, 2m) + Li_{-\mu}(\sqrt{q})$$

and

$$\sum_{n=1}^{2m-1} (-1)^n n^{\mu} q^{\frac{n}{2}} = -q^m \Phi(-\sqrt{q}, -\mu, 2m) + Li_{-\mu}(-\sqrt{q}).$$

Note that there is a minor error in the formula (2.6) of [1].

Theorem 7.3. Let μ be a positive integer. Then we have

$$\begin{split} &\text{(i)} \quad \sum_{[(D,M)]\in \tilde{\mathcal{D}}_{\ell,d}} L^{(\mu)}(\frac{1}{2},\chi_{(D,M)}) \\ &= 2\frac{(-2\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)^{2}(\mu+1)} q^{2\ell+d+1} \sum_{n=0}^{\mu} (-1)^{n} \binom{\mu+1}{n} B_{n}(\ell+d)^{\mu+1-n} \\ &\quad and \\ &\qquad \sum_{[(D,M)]\in \tilde{\mathcal{D}}_{m}} L^{(\mu)}(\frac{1}{2},\chi_{(D,M)}) \\ &= 2\frac{(-2\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{m-1}(q^{m}-1) \sum_{n=0}^{\mu} (-1)^{n} \binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n}. \\ &\text{(ii)} \quad \sum_{[(D,M)]\in \mathcal{D}_{m}} L^{(\mu)}(\frac{1}{2},\chi_{(D,M)}) \\ &= \frac{(-2\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{2m} \sum_{n=0}^{\mu} (-1)^{n} \binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n} \\ &\qquad + \frac{(-\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{m} \left(q^{m} \Phi(\sqrt{q}, -\mu, 2m) - Li_{-\mu}(\sqrt{q}) \right). \\ &\text{(iii)} \quad \sum_{[(D,M)]\in \mathcal{D}'_{m}} L^{(\mu)}(\frac{1}{2},\chi_{(D,M)}) \\ &= \frac{(-2\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)(\mu+1)} q^{2m} \sum_{n=0}^{\mu} (-1)^{n} \binom{\mu+1}{n} B_{n}(m-1)^{\mu+1-n} \\ &\qquad + \frac{(-\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{m} \left(q^{m} \Phi(-\sqrt{q}, -\mu, 2m) - Li_{-\mu}(-\sqrt{q}) \right). \end{split}$$

Proof. Once we have the formulas for $S_{m,n}$, $S'_{m,n}$ and $\tilde{S}_{\ell,d,n}$, the computations in [1, §3-5], can be applied to this case. We will prove the first formula for the convenience of the reader. We have

$$\sum_{[(D,M)]\in\tilde{\mathcal{D}}_{\ell,d}} L^{(\mu)}(\frac{1}{2},\chi_{(D,M)})$$

$$= (-1)^{\mu} (\log q)^{\mu} \sum_{n=0}^{2\ell+2d+1} \tilde{S}_{\ell,d,n} n^{\mu} q^{-n/2}$$

$$= 2(q-1)(-1)^{\mu} (\log q)^{\mu} q^{\ell+d} \sum_{n=0}^{2\ell+2d+1} \Phi(\frac{n}{2},\ell) n^{\mu} q^{-n} \quad \text{(by (7.3))}$$

$$= 2(q-1) \frac{(-1)^{\mu} (\log q)^{\mu}}{\zeta_{\mathbb{A}}(2)} q^{2\ell+d} \sum_{n=1}^{\ell+d} (2n)^{\mu} \quad \text{(by (7.4))}.$$

We get the result by Foulhaber's formula.

References

- J. Andrade, Mean values of derivatives of L-functions in function fields: II, J. Number Theory 183 (2018), 24-39. https://doi.org/10.1016/j.jnt.2017.08.038
- J. Andrade, Mean values of derivatives of L-functions in function fields: III, Proc. Roy. Soc. Edinburgh Sect. A 149 (2019), no. 4, 905-913. https://doi.org/10.1017/prm. 2018.53
- [3] J. Andrade and H. Jung, Mean values of derivatives of L-functions in function fields: IV, J. Korean Math. Soc. 58 (2021), no. 6, 1529-1547. https://doi.org/10.4134/JKMS. i210243
- [4] J. C. Andrade and J. P. Keating, The mean value of L(¹/₂, χ) in the hyperelliptic ensemble, J. Number Theory 132 (2012), no. 12, 2793-2816. https://doi.org/10.1016/j.jnt.2012.05.017
- [5] J. Andrade and S. Rajagopal, Mean values of derivatives of L-functions in function fields: I, J. Math. Anal. Appl. 443 (2016), no. 1, 526-541. https://doi.org/10.1016/ j.jmaa.2016.05.019
- [6] S. Bae and H. Jung, Average values of L-functions in even characteristic, J. Number Theory 186 (2018), 269–303. https://doi.org/10.1016/j.jnt.2017.10.006
- [7] Y.-M. J. Chen, Average values of L-functions in characteristic two, J. Number Theory 128 (2008), no. 7, 2138-2158. https://doi.org/10.1016/j.jnt.2007.12.011
- [8] J. B. Conrey, The fourth moment of derivatives of the Riemann zeta-function, Quart.
 J. Math. Oxford Ser. (2) 39 (1988), no. 153, 21-36. https://doi.org/10.1093/qmath/39.1.21
- [9] J. B. Conrey, M. O. Rubinstein, and N. C. Snaith, Moments of the derivative of characteristic polynomials with an application to the Riemann zeta function, Comm. Math. Phys. 267 (2006), no. 3, 611–629. https://doi.org/10.1007/s00220-006-0090-5
- [10] S. M. Gonek, Mean values of the Riemann zeta function and its derivatives, Invent. Math. 75 (1984), no. 1, 123-141. https://doi.org/10.1007/BF01403094
- [11] A. E. Ingham, Mean-value theorems in the theory of the Riemann zeta-function, Proc. London Math. Soc. (2) 27 (1927), no. 4, 273–300. https://doi.org/10.1112/plms/s2-27.1.273

SUNGHAN BAE
DEPARTMENT OF MATHEMATICS
KAIST
TAEJON 305-701, KOREA

Email address: shbae@kaist.ac.kr

HWANYUP JUNG
DEPARTMENT OF MATHEMATICS EDUCATION
CHUNGBUK NATIONAL UNIVERSITY
CHEONGJU 361-763, KOREA
Email address: hyjung@chungbuk.ac.kr