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CONVOLUTION SUM OF RAMANUJAN’S SUM

GYE HWAN JO, ABDELMEJID BAYAD AND DAEYEOUL KIM∗

Abstract. This article is the result of calculating the convolution of Ra-
manujan’s sum and natural number multiplied. Among these results, spe-
cial values are expressed by Euler and Bernoulli functions.
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1. Introduction

The theory of convolution sums of arithmetic functions is being studied a lot
because it is helpful for the various number theory and special functions. Various
results can be seen in the convolution sum for Ramanujan’s sum. In fact,

Let n and r be positive integers. Define

c(n, r) :=

r∑
x=1

gcd(x,r)=1

e
2πnx

r

and
c(m,n, r) :=

∑
d|gcd(m,n,r)

d2µ(r/d), (1)

where µ is the Möbius function. c(n, r) is called Ramanujan’s sum. In this
article, we will use c(m,n, r) = c(2)(gcd(m,n), r) interchangeably. It is well
known that c(n, r) =

∑
d|gcd(n,r) µ(r/d)d and c(0, r) = ϕ(r).

In 1918, Srinivasa Ramanujan considered Ramanujan’s sums (see [6]). In fact,
Srinivasa Ramanujan sum was usefully used when proving Vinogradov’s theorem
[5, Chapter 8]. In this paper we define the quasi-generalized Ramanujan’s sum
and give the relation to the Ramanujan’s sum, Bernoulli polynomials and Euler
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polynomials. Bernoulli polynomials and Euler polynomials have been studied
by many mathematicians (see [1, 2, 4, 7]).

For any rational numbers k1, k2, k3, the quasi-generalized Ramanujan’s sums
are

C+
(k1,k2,k3)

(l) :=

l∑
n=1

m≤ n
k1∑

m=1
r|n

c(k1m,n− k1m, r)mk2nk3

and

C−
(k1,k2,k3)

(l) :=

l∑
n=1

m≤ n
k1∑

m=1
r|n

c(k1m,n− k1m, r)(−1)nmk2nk3 ,

where l is a positive integer.
In fact, we will prove the following result.

Theorem 1.1. Let k3 be an integer and l be a positive integer. Then we have

C+
(1,0,k3)

(l) =


Bk3+3(l+1)−Bk3+3

k3+3 if k3 > −2,
l if k3 = −2,
H

(−k3−2)
l if k3 < −2,

C+
(1,1,k3)

(l) =


Bk3+4(l+1)−Bk3+4

2k3+8 if k3 > −3,
l
2 if k3 = −3,
1
2H

(−k3−3)
l if k3 < −3,

C−
(1,0,k3)

(l) =


Ek3+2(0)+(−1)lEk3+2(l+1)

2 if k3 > −2,
χ(l) if k3 = −2,
S
(−k3−2)
l if k3 < −2

and

C−
(1,1,k3)

(l) =


Ek3+3(0)+(−1)lEk3+3(l+1)

4 if k3 > −3,
χ(l)
2 if k3 = −3,

S
(−k3−3)
l if k3 < −3.

Here, H
(t)
l = 1 + 1

2t + ... + 1
lt , S

(t)
l = −1 + 1

2t − ... + (−1)l 1lt , Bn(z)(resp.,
En(z)) is the nth Bernoulli polynomial (resp., Euler polynomial) and

χ(l) =

{
0, if l is even,
−1, otherwise.

Example 1.2. Let l be a positive integer. Then

C+(l) := C+
(1,0,0)(l) =

l∑
n=1

n∑
m=1
r|n

c(m,n−m, r) =
B3(l + 1)

3
=

l(l + 1)(2l + 1)

6
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and

C−(l) := C−
(1,0,0)(l) =

l∑
n=1

n∑
m=1
r|n

(−1)nc(m,n−m, r) =
(−1)lE2(l + 1)

2
=

(−1)ll(l + 1)

2
.

Figure 1. Values of G′(l), C+(l), G(l), Pyr3(l) (2 ≤ l ≤ 8)

Remark 1.1. Let G(l) :=
∑

(a+b+c)x=l+2

a and G′(l) :=
∑

(a+b+c)x=l+2

2a with

a, b, c, l, x ∈ N. The result of studying the values of functions such as G(l) is in
[8].

Using [3, Theorem 1.1 and Remark 2.2] and Theorem 1.1, we obtain

G′(l) > C+(l) > G(l) ≥ Pyr3(l)

with l ≥ 1. Here, Pyra(z) = 1
6 (z(z + 1)((a − 2)z + 5 − a)) be the ath order

pyramid number. In Figure 1, we plot the graphs for the values of G′(l), C+(l),
G(l) and Pyr3(l) when l = 2, 3, 4, 5, 6, 7, 8.

It is easly checked that if l = 2 or l + 2 is a prime number for l ≥ 1, then we
obtain

G(l) = Pyr3(l) =
l(l + 1)(l + 2)

6
.

2. Proof of Theorem 1.1

We need several lemmas to prove Theorem 1.1, so we introduce them first.

Lemma 2.1. Let k, n and r be positive integers. Then
n∑

m=1

c(m,n−m, r)k = (φ ∗ c(2)(·, r)k)(n) (2)
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and
n−1∑
m=1

c(m,n−m, r)k = (φ ∗ c(2)(·, r)k)(n)− c(2)(n, r)k.

Here, ∗ is a Dirichlet convolution, that is, (f ∗ g)(n) =
∑

d|n f(d)g(
n
d ) and

c(2)(·, r) means that one of the two variables, r, is given as a fixed number, and
the other is regarded as a one varible function.

Proof. Let

A :=

n∑
m=1

c(m,n−m, r)k =
∑
d|n

n/d∑
x=1

gcd(x,n/d)=1

c(xd, n− xd, r)k.

Since gcd(x, n/d) = 1 implies gcd(x, n/d − x) = 1, gcd(xd, n − xd) = d and
c(xd, n− xd, r) = c(2)(d, r) by (1). Thus, we deduce that

A =
∑
d|n

c(2)(d, r)k
n/d∑
x=1

gcd(x,n/d)=1

1 =
∑
d|n

φ(n/d)c(2)(d, r)k.

From (2), we obtain that
n−1∑
m=1

c(m,n−m, r)k = (φ ∗ c(2)(·, r)k)(n)− c(2)(n, r)k.

This completes the proof of Lemma 2.1. □

Lemma 2.2. Let n and r be positive integers. Then
(φ ∗ c(2)(·, r))(n) = nc(n, r). (3)

Proof. To prove Lemma 2.2, let us define g(n, r) as follows

g(n, r) :=

{
r if r|n
0 otherwise.

From the left hand side of (3), we get the following process by rearranging
terms. That is,

(φ ∗ c(2)(·, r))(n) =
∑
d|n

φ(n/d)
∑

e|gcd(d,r)

e2µ(r/e) =
∑
d|n

φ(n/d)
∑
d|r

eµ(r/e)g(d, e)

=
∑
e|r

e2µ(r/e)
∑
d|n
e|d

φ(n/d) =
∑

e|gcd(n,r)

e2µ(r/e)
∑

D|n/e
d=De

φ(n/De)

=
∑

e|gcd(n,r)

e2µ(r/e)
n

e
= n

∑
e|gcd(n,r)

eµ(r/e) = nc(n, r).

□
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By Lemma 2.2, we have Corollary 2.3.

Corollary 2.3. Let n and r be positive integers. Then
n−1∑
m=1

c(m,n−m, r) = nc(n, r)− c(2)(n, r) =
∑

d|gcd(n,r)

d(n− d)µ(r/d).

Furthermore, by using the Möbius inversion formula, we have

c(2)(n, r) = (ζ1µ ∗ ζ0 ∗ ζ1c(·, r))(n).

Here, ζi(t) = ti and fg(t) = f(t)g(t), where i is a non-negatvie integer and t
is a positive integer.

Lemma 2.4. Let n and r be positive integers. If r|n, then
n∑

m=1

c(m, r)c(n−m, r) = nc(n, r). (4)

Proof. Let B be the left hand side of (4) and let r|n. By the definition of the
Ramanujan’ sum, we derive that

B =

n∑
m=1

r∑
x=1

gcd(x,r)=1

r∑
y=1

gcd(y,r)=1

e2πmx/r · e2π(n−m)y/r

=

r∑
y=1

gcd(y,r)=1

e2πny/r
r∑

x=1
gcd(x,r)=1

[
n∑

m=1

e2πm(x−y)/r

]
.

Since 1 ≤ x, y ≤ r and r|(x − y) implies x = y, the sum in brackets is equal to
n if x = y and 0 otherwise. Therefore,

B = n

r∑
x=1

gcd(x,r)=1

e2πnx/r = nc(n, r).

□

By Corollary 2.3 and Lemma 2.4, we have that

Corollary 2.5. Let n and r be positive integers. If r|n, then
n∑

m=1

c(m,n−m, r) =

n∑
m=1

c(m, r)c(n−m, r) = nc(n, r) = nφ(r).

Proof of Theorem 1.1
It is well-known that ∑

r|n

φ(r) = n (5)
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by Lemma 2.5 and (5), we obtain that∑
r|n

n∑
m=1

c(m,n−m, r) =
∑
r|n

nφ(r) = n2. (6)

It is easily checked that
n∑

m=1

c(m,n−m, r)m2 =

n∑
m=1

c(m,n−m, r)(n−m)2

and
n∑

m=1

c(m,n−m, r)m =

n∑
m=1

c(m,n−m, r)
n

2
. (7)

Using (6), (7) and two results((2.2), (2.3)) in Sun’s article (see [7]), the proof
of Theorem 1.1 is completed. □
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