DOI QR코드

DOI QR Code

초음파 분무 열분해법을 이용한 고체전해질용 Lithium Lanthanum Titanium Oxide 제조

The Synthesis of Lithium Lanthanum Titanium Oxide for Solid Electrolyte via Ultrasonic Spray Pyrolysis

  • 노재석 (단국대학교 에너지공학과) ;
  • 양민호 (단국대학교 에너지공학과) ;
  • 이근재 (단국대학교 에너지공학과)
  • Jaeseok, Roh (Department of Energy Engineering, Dankook University) ;
  • MinHo, Yang (Department of Energy Engineering, Dankook University) ;
  • Kun-Jae, Lee (Department of Energy Engineering, Dankook University)
  • 투고 : 2022.12.05
  • 심사 : 2022.12.17
  • 발행 : 2022.12.28

초록

Lithium lanthanum titanium oxide (LLTO) is a promising ceramic electrolyte because of its high ionic conductivity at room temperature, low electrical conductivity, and outstanding physical properties. Several routes for the synthesis of bulk LLTO are known, in particular, solid-state synthesis and sol-gel method. However, the extremely low ionic conductivity of LLTO at grain boundaries is one of the major problems for practical applications. To diminish the grain boundary effect, the structure of LLTO is tuned to nanoscale morphology with structures of different dimensionalities (0D spheres, and 1D tubes and wires); this strategy has great potential to enhance the ion conduction by intensifying Li diffusion and minimizing the grain boundary resistance. Therefore, in this work, 0D spherical LLTO is synthesized using ultrasonic spray pyrolysis (USP). The USP method primarily yields spherical particles from the droplets generated by ultrasonic waves passed through several heating zones. LLTO is synthesized using USP, and the effects of each precursor and their mechanisms as well as synthesis parameters are analyzed and discussed to optimize the synthesis. The phase structure of the obtained materials is analyzed using X-ray diffraction, and their morphology and particle size are analyzed using field-emission scanning electron microscopy.

키워드

과제정보

본 연구는 정부(과학기술정보통신부)의 재원으로 한국연구재단의 지원을 받아 수행된 연구임(No. 2022R1A2C1007909).

참고문헌

  1. A. Manthiram, X. Yu and S. Wang: Nat. Rev. Mater., 2 (2017) 1.
  2. W. H. Meyer: Adv. Mater., 10 (1998) 439. https://doi.org/10.1002/(SICI)1521-4095(199804)10:6<439::AID-ADMA439>3.0.CO;2-I
  3. K. Murata, S. Izuchi and Y. Yoshihisa: Electrochim. Acta, 45 (2000) 1501. https://doi.org/10.1016/S0013-4686(99)00365-5
  4. F. Croce, G. B. Appetecchi, L Persi and B. Scrosati: Nature, 394 (1998) 456. https://doi.org/10.1038/28818
  5. J. B. Bates, N. J. Dudney, G. R.Gruzalski, R. A. Zuhr, A. Choudhury, C. F. Luck and J. D. Robertson: Solid State Ion., 53 (1992) 647.
  6. E. Quartarone and P. Mustarelli: Chem. Soc. Rev., 40 (2011) 2525. https://doi.org/10.1039/c0cs00081g
  7. D. Aurbach: J. Power Sources, 89 (2000) 206. https://doi.org/10.1016/S0378-7753(00)00431-6
  8. J. Lu and Y. Li: J. Mater. Sci., 32 (2021) 9736.
  9. O. Cojocaru-Miredin, J. Schmieg, M. Muller, A. Weber, E. Ivers-Tiffee and D. Gerthsen: POWER-D-22-00321, (2022)
  10. C. W. Ban and G. M. Choi: Solid State Ion., 140 (2001) 285. https://doi.org/10.1016/S0167-2738(01)00821-9
  11. Y. Sun, P. Guan, Y. Liu, H. Xu, S. Li and D. Chu: Crit. Rev. Solid State Mater. Sci., 44 (2019) 265.
  12. C. R. M. Pila, E. P. Cappe, N. D. S. Mohallem, O. L. Alves, M. A. Frutis, N. S. Ramirez, R. M. Torresi, H. L. Ramirez and Y. M. Laffita: Solid State Sci., 88 (2019) 41. https://doi.org/10.1016/j.solidstatesciences.2018.10.014
  13. X. Lu, F. Meng, L. Wang, H. Zhu and H. Li: Powder Metall. Met. Ceram., 56 (2018) 611.
  14. Y. Inaguma, C. Liquan, M. Itoh, T. Nakamura, T. Uchida, H. Ikuta and M. Wakihara: Solid State Commun., 86 (1993) 689. https://doi.org/10.1016/0038-1098(93)90841-A
  15. H. Geng, J. Lan, A. Mei, Y. Lin and C. W. Nan: Electrochim. Acta, 56 (2011) 3406. https://doi.org/10.1016/j.electacta.2010.06.031
  16. S. C. Tasi, Y. L. Song, C. S. Tasi, C. C. Yang, W. Y. Chiu and H. M. Lin: J. Mater. Sci., 39 (2004) 3647. https://doi.org/10.1023/B:JMSC.0000030718.76690.11
  17. S. R. Ardekani, A. S. R. Aghdam, M. Nazari, A. Bayat, E. Yazdani and E. S. Iranizad: J. Anal. Appl. Pyrolysis, 141 (2019) 104631. https://doi.org/10.1016/j.jaap.2019.104631
  18. G. Schwarzenbach, J. Muehlebach and K. Mueller.: Inorg. Chem., 9 (1970) 2381. https://doi.org/10.1021/ic50093a001
  19. Y. Kang, J.-J. Choi, N. H. Kwon, D.-G. Kim and K.-J. Lee: J. Powder Mater., 26 (2019) 487. https://doi.org/10.4150/KPMI.2019.26.6.487
  20. E. J. van den Ham, N. Peys, C. De Dobbelaere, J. D' Haen, F. Mattelaer, C. Detavernier, P. H. L. Notten, A. Hardy and M. K. Van Bael: J. Sol-Gel Sci. Technol., 73 (2015) 536. https://doi.org/10.1007/s10971-014-3511-5
  21. H. M. Rietveld: Acta Cryst, 22 (1967) 151. https://doi.org/10.1107/S0365110X67000234
  22. R. J. Hill and C. J. Howard: J. Appl. Crystallogr., 20 (1987) 467. https://doi.org/10.1107/S0021889887086199