DOI QR코드

DOI QR Code

Analysis of Important Medical Adverse Events and Signals Related with Cyclosporine and Tacrolimus Using the FDA Adverse Event Reporting System (FAERS) Database

FDA 부작용 보고 시스템 데이터베이스를 이용한 Cyclosporine과 Tacrolimus의 주요 약물이상사례 및 실마리 정보 분석

  • 차승현 (대구가톨릭대학교 약학대학) ;
  • 임지현 (대구가톨릭대학교 약학대학) ;
  • 송윤경 (대구가톨릭대학교 약학대학)
  • Received : 2022.12.01
  • Accepted : 2022.12.24
  • Published : 2022.12.31

Abstract

Objective: This study aimed to analyze the important medical adverse events (IMEs) of cyclosporine and tacrolimus using the reports in US FDA adverse event reporting system (FAERS) and to detect related signals. Methods: The FAERS database was used to analyze the IMEs reported for cyclosporine or tacrolimus during 2017-2021. Reporting odds ratio (ROR) and information component were used to analyze signals for adverse events of both drugs. It was investigated whether the detected signals were present on drug labels in Korea and the United States. Results: Among the total 24,688 reports, the reports on tacrolimus accounted 75.8%. Mean age of the patients was 47.9 years old and median number of adverse events was 2.0 per report. The number of patients hospitalized for adverse events was 7,979 (25.3%). Among the adverse reactions reported on the cyclosporine and tacrolimus, 576 and 1,363 events were detected as signals for cyclosporine and tacrolimus, respectively, and of these, IMEs accounted for 44.8 and 59.2%, respectively. The IMEs related with infections/infestations, renal/urinary disorders, and blood and lymphatic system disorders were reported frequently for both drugs. The most frequently detected IMEs were renal impairment for cyclosporine and acute kidney injury for tacrolimus. Among the top 3 IMEs for each reported SOC for cyclosporine and tacrolimus, 9 and 2 unexpected adverse events were identified, respectively. Conclusion: This study identified the IMEs and signals of cyclosporine and tacrolimus, and detected unidentified adverse events in a drug information database.

Keywords

Acknowledgement

이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단 기초연구사업의 지원을 받아 수행된 연구임(No. NRF-2022R1C1C1011730).

References

  1. Safarini OA, Keshavamurthy C, Patel P. Calcineurin Inhibitors. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from https://www.ncbi.nlm.nih.gov/books/NBK558995/. Accessed November 27, 2022. 
  2. Karolin A, Genitsch V, Sidler D. Calcineurin inhibitor toxicity in solid organ transplantation. Pharmacology 2021;106(7-8):347-55.  https://doi.org/10.1159/000515933
  3. Heo YA. Voclosporin: First approval. Drugs 2021;81(5):605-10.  https://doi.org/10.1007/s40265-021-01488-z
  4. Gelder E, Lerma E, Engelke K, Huizinga RB. Voclosporin: a novel calcineurin inhibitor for the treatment of lupus nephritis. Expert Rev Clin Pharmacol 2022;15(5):515-29.  https://doi.org/10.1080/17512433.2022.2092470
  5. Mok CC. Calcineurin inhibitors in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2017;31(3):429-38.  https://doi.org/10.1016/j.berh.2017.09.010
  6. Webster A, Woodroffe RC, Taylor RS, Chapman JR, Craig JC. Tacrolimus versus cyclosporin as primary immunosuppression for kidney transplant recipients. Cochrane Database Syst Rev 2005;(4):CD003961. 
  7. Naesens M, Kuypers DR, Sarwal M. Calcineurin inhibitor nephrotoxicity. Clin J Am Soc Nephrol 2009;4(2):481-508.  https://doi.org/10.2215/CJN.04800908
  8. Araya AA, Tasnif Y. Tacrolimus. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 Jan-. Available from https://www.ncbi.nlm.nih.gov/books/NBK544318/. Accessed November 27, 2022. 
  9. Rush D. The impact of calcineurin inhibitors on graft survival. Transplant Rev (Orlando) 2013;27(3):93-5.  https://doi.org/10.1016/j.trre.2013.04.003
  10. Fellstrom B. Cyclosporine nephrotoxicity. Transplant Proc 2004;36(2 Suppl):220S-223S.  https://doi.org/10.1016/j.transproceed.2004.01.028
  11. Noble J, Terrec F, Malvezzi P, Rostaing L. Adverse effects of immunosuppression after liver transplantation. Best Pract Res Clin Gastroenterol 2021;54-55:101762.  https://doi.org/10.1016/j.bpg.2021.101762
  12. Remuzzi G, Bertani T. Renal vascular and thrombotic effects of cyclosporine. Am J Kidney Dis 1989;13(4):261-72.  https://doi.org/10.1016/s0272-6386(89)80032-0
  13. Khaleel M A, Khan A H, Ghadzi S M S, Adnan A S, Abdallah Q M. A standardized dataset of a spontaneous adverse event reporting system. Healthcare (Basel) 2022;10(3):420. 
  14. Abajo FJd. Improving Pharmacovigilance Beyond Spontaneous Reporting. Int J Pharm Med 2005;19(4):209-18.  https://doi.org/10.2165/00124363-200519040-00002
  15. Fukazawa C, Hinomura Y, Kaneko M, Narukawa M. Significance of data mining in routine signal detection: Analysis based on the safety signals identified by the FDA. Pharmacoepidemiol Drug Saf 2018;27(12):1402-8.  https://doi.org/10.1002/pds.4672
  16. European Medicines Agency. ICH E2E Pharmacovigilance planning (Pvp) - Scientific guideline. Available from https://www.ema.europa.eu/en/documents/scientific-guideline/international-conference-harmonisation-technical-requirements-registration-pharmaceuticals-human-use_en-25.pdf. Accessed December 19, 2022. 
  17. Zhou X, Ye X, Guo X, et al. Safety of SGLT2 inhibitors: A pharmacovigilance study from 2013 to 2021 based on FAERS. Front Pharmacol 2021;12:766125.  https://doi.org/10.3389/fphar.2021.766125
  18. Edwards I R, Biriell C. Harmonisation in pharmacovigilance. Drug Saf 1994;10(2):93-102.  https://doi.org/10.2165/00002018-199410020-00001
  19. European Medicines Agency. Guideline on good pharmacovigilance practices (GVP) Module VII - Periodic safety update report (Rev 1). Available from https://www.ema.europa.eu/en/documents/scientific-guideline/guideline-good-pharmacovigilance-practices-gvp-module-vii-periodic-safety-update-report_en.pdf. Accessed December 19, 2022. 
  20. Poluzzi E, Raschi E, Piccinni C, De F. Data Mining Techniques in Pharmacovigilance: Analysis of the Publicly Accessible FDA Adverse Event Reporting System (AERS). In: Karahoca, A, eds. Data Mining Applications in Engineering and Medicine [Internet]. London: IntechOpen; 2012. Available from https://www.intechopen.com/chapters/38579. Accessed November 28, 2022. 
  21. Gatti M, Fusaroli M, Raschi E, Moretti U, Poluzzi E, Ponti FD. Serious adverse events with tedizolid and linezolid: pharmacovigilance insights through the FDA adverse event reporting system. Expert Opin Drug Saf 2021;20(11):1421-31.  https://doi.org/10.1080/14740338.2021.1956461
  22. European Medicines Agency. Important medical event terms list version 25.1. European Medicines Agency. Available from https://www.ema.europa.eu/en/human-regulatory/research-development/pharmacovigilance/eudravigilance/eudravigilance-system-overview. Accessed November 15, 2022. 
  23. Baek JW, Yang BR, Choi SB, Shin KH. Signal Detection for Adverse Events of Finasteride Using Korea Adverse Event Reporting System (KAERS) Database. Korean J Clin Pharm 2021;31(4):324-31.  https://doi.org/10.24304/kjcp.2021.31.4.324
  24. Sakaeda T, Tamon A, Kadoyama K, Okuno Y. Data mining of the public version of the FDA Adverse Event Reporting System. Int J Med Sci 2013;10(7):796-803.  https://doi.org/10.7150/ijms.6048
  25. Evans SJ, Waller PC, Davis S. Use of proportional reporting ratios (PRRs) for signal generation from spontaneous adverse drug reaction reports. Pharmacoepidemiol Drug Saf 2001;10(6):483-6.  https://doi.org/10.1002/pds.677
  26. van Puijenbroek EP, Bate A, Leufkens HG, Lindquist M, Orre R, Egberts AC. A comparison of measures of disproportionality for signal detection in spontaneous reporting systems for adverse drug reactions. Pharmacoepidemiol Drug Saf 2002;11(1):3-10.  https://doi.org/10.1002/pds.668
  27. U.S. Food and Drug Administration. FDA Adverse Event Reporting System (FAERS) Public Dashboard. Available from https://fis.fda.gov/sense/app/95239e26-e0be-42d9-a960-9a5f7f1c25ee/sheet/7a47a261-d58b-4203-a8aa-6d3021737452/state/analysis. Accessed December 20, 2022. 
  28. OpenVigil. OpenVigilFDA v1.0.2. Available from http://openvigil.pharmacology.uni-kiel.de/openvigilfda.php. Accessed December 20, 2022. 
  29. Park SH, Kim MS, Kim JE, et al. Characteristics of kidney transplantation recipients over time in South Korea. Korean J Intern Med 2020;35(6):1457-67.  https://doi.org/10.3904/kjim.2019.292
  30. Bentata Y. Tacrolimus: 20 years of use in adult kidney transplantation. What we should know about its nephrotoxicity. Artif Organs 2020;44(2):140-52.  https://doi.org/10.1111/aor.13551
  31. Henry ML. Cyclosporine and tacrolimus (FK506): a comparison of efficacy and safety profiles. Clin Transplant 1999;13(3):209-20.  https://doi.org/10.1034/j.1399-0012.1999.130301.x
  32. Shrestha BM. Two decades of tacrolimus in renal transplant: Basic science and clinical evidences. Exp Clin Transplant 2017;15(1):1-9. 
  33. Parodi EL, La Porta E, Russo R, et al. Ten-year efficacy and safety of once-daily tacrolimus in kidney transplant: A prospective cohort study. Transplant Proc 2020;52(10):3112-7.  https://doi.org/10.1016/j.transproceed.2020.02.149
  34. Pascual M, Theruvath T, Kawai T, Tolkoff-Rubin N, Cosimi AB. Strategies to improve long-term outcomes after renal transplantation. N Engl J Med 2002;346(8):580-90.  https://doi.org/10.1056/NEJMra011295
  35. Lo A. Strategies to prevent chronic allograft nephropathy in kidney transplantation: focus on calcineurin inhibitors. Prog Transplant 2004;14(2):157-64.  https://doi.org/10.7182/prtr.14.2.n0688r18l7051t47
  36. Kizilbash SJ, Rheault MN, Bangdiwala A, Matas A, Chinnakotla S, Chavers BM. Infection rates in tacrolimus versus cyclosporine-treated pediatric kidney transplant recipients on a rapid discontinuation of prednisone protocol: 1-year analysis. Pediatr Transplant 2017;21(4): 10.1111/petr.12919. 
  37. Jamboti JS. BK virus nephropathy in renal transplant recipients. Nephrology (Carlton) 2016;21(8):647-54.  https://doi.org/10.1111/nep.12728
  38. U.S. Multicenter FK506 Liver Study Group. A comparison of tacrolimus (FK 506) and cyclosporine for immunosuppression in liver transplantation. N Engl J Med 1994;331(17):1110-5.  https://doi.org/10.1056/NEJM199410273311702
  39. Odek C. Cyclosporine-associated thrombotic microangiopathy and thrombocytopenia-associated multiple organ failure: a case successfully treated with therapeutic plasma exchange. J Pediatr Hematol Oncol 2014;36(2):e88-90.  https://doi.org/10.1097/MPH.0b013e31828e505b
  40. Markan A, Ayyadurai N, Singh R. Tacrolimus Induced Thrombotic Microangiopathy (TMA) Presenting as Acute Macular Neuroretinopathy. Ocul Immunol Inflamm 2021:1-2. 
  41. Al-Nouri ZL, Reese JA, Terrell DR, Vesely SK, George JN. Drug-induced thrombotic microangiopathy: a systematic review of published reports. Blood 2015;125(4):616-8.  https://doi.org/10.1182/blood-2014-11-611335
  42. Song HJ CN, Park BJ. Adverse drug reaction surveillance and the role of family physicians. J Korean Acad Fam Med 2007;28(11):815-23.