DOI QR코드

DOI QR Code

장소별 완속충전기 적정 보급 비율에 관한 연구 : 전기차 이용자의 통행 및 충전행태에 따른 이질성을 중심으로

Exploring a Balanced Share of Slow Charging Options by Places Based on Heterogeneous Travel and Charging Behavior of Electric Vehicle Users

  • 이재현 (경북대학교 지리학과) ;
  • 윤서연 (국토연구원 국토인프라연구본부) ;
  • 김현미 (한국항공대학교 항공교통물류학부)
  • Jae Hyun, Lee (Dept. of Geography., Kyungpook National University) ;
  • Seo Youn, Yoon (Division of National Infrastructure Research, Korea Research Institute for Human Settlements) ;
  • Hyeonmi, Kim (School of Air Transportation and Logistics, Korea Aerospace University)
  • 투고 : 2022.10.05
  • 심사 : 2022.12.11
  • 발행 : 2022.12.31

초록

최근 정부의 적극적인 지원정책과 함께 전기차 이용자들이 급증하고 있으며, 이로 인해 이용자 중심의 충전인프라 구축에도 많은 관심을 쏟아지고 있다. 다양한 정책의 수립과 함께 건물 특성에 기반한 총량적인 전기차 충전기 보급대수 기준은 마련되고 있으나, 장소별 특성에 기반한 완속과 급속충전기 적정 보급 비율에 대한 연구는 제한적이다. 이에 본 연구에서는 전기차 이용자들을 대상으로 진행한 설문조사를 통해 수집한 장소 유형별 공용 완속충전기 보급 비율 자료를 바탕으로 적정 보급비율을 도출하고, 개인별로 충전 환경 요구가 어떻게 차별적으로 유형화되고 이들이 어떠한 특성과 연관되는지 분석하였다. 분석 결과, 10% 이하의 완속 충전기가 필요한 유형, 40-60% 수준의 완속충전기가 필요하여 완속과 급속충전기의 균등 분배가 필요한 유형, 완속이 80% 이상 필요한 유형 등 총 세 가지 장소 유형을 도출할 수 있었다. 또한 잠재계층 군집분석을 통해 개인별로 서로 다른 장소유형별 완속충전기 필요 수준을 분류한 결과 5개 군집으로 유형화할 수 있었으며, 이들은 사회경제적 변수, 차량의 특성, 통행 및 충전행태와 연관된 것으로 나타났다. 특히, 충전행태와 주말 통행행태 그리고 성별, 소득과의 연관성이 높은 것으로 나타났다. 본 연구의 분석결과는 향후 충전인프라 정책 수립 및 전기차 시장의 변화에 따른 충전인프라 보급 기준 마련에 활용될 수 있을 것으로 사료된다.

With the support of local and central governments, various incentive policies for "green" cars have been established, and the number of electric vehicle users has been rapidly increasing in recent years. As a result, much attention is being given to establishing a user-centered charging infrastructure. A standard for the number of electric vehicle chargers to be supplied is being prepared based on building characteristics, but there is quite limited research on the appropriate ratio of slow and fast chargers based on the characteristics of each place. Therefore, this study derived an appropriate penetration ratio based on data about the distribution ratio of common slow chargers. These data were collected using a survey of actual electric vehicle users. Next, an analysis was done on how to categorize the needs of charging environments and to determine what criteria or characteristics to use for categorization. Based on the results of the survey analysis, three types of places were derived. Type-1 places require 10% of chargers to be slow chargers, Type-2 places require 40-60% of chargers to be slow chargers (i.e., around equal distribution of slow and fast chargers), and Type-3 places require more than 80% of chargers to be slow chargers. The required levels of slow chargers were classified by place type and by individual using latent class cluster analysis, which made it possible to categorize them into five clusters related to socioeconomic variables, vehicle characteristics, traffic, and charging behaviors. It was found that there was a high correlation between charging behavior, weekend travel behavior, gender, and income. The results and insights from this study could be used to establish charging infrastructure policies in the future and to prepare standards for supplying charging infrastructure according to changes in the electric vehicle market.

키워드

과제정보

This research was supported by Kyungpook National University Research Fund (2021)

참고문헌

  1. Axsen, J., Kurani, K. S., McCarthy, R. and Yang, C.(2011), "Plug-in hybrid vehicle GHG impacts in California: Integrating consumer-informed recharge profiles with an electricity-dispatch model", Energy Policy, vol. 39, pp.1617-1629. https://doi.org/10.1016/j.enpol.2010.12.038
  2. Byun, W. H., Lee, K. and Kee, H. Y.(2013), "Analysis of Choice Model for EV Charger Types and Willingness to Pay for Charging Rate Based on Logit model", The Journal of the Korea Institute of Intelligent Transport Systems, vol. 12 no. 4, pp.56-65. https://doi.org/10.12815/kits.2013.12.4.056
  3. Chakraborty, D., Bunch, D. S., Lee, J. H. and Tal, G.(2019), "Demand drivers for charging infrastructure-charging behavior of plug-in electric vehicle commuters", Transportation Research Part D: Transport and Environment, vol. 76, pp.255-272. https://doi.org/10.1016/j.trd.2019.09.015
  4. EU-Interreg Europe(2020), EV Energy's recommendations on electric vehicle charging infrastructure, https://www.interregeurope.eu/policylearning/news/5039/ev-energy-s-recommendations-on-electric-vehicle-charging-infrastructure/
  5. Hackbarth, A. and Madlener, R.(2013), "Consumer Preferences for Alternative Fuel Vehicles: A Discrete Choice Analysis", Transportation Research Part D: Transport and Environment, vol. 25, pp.5-17. https://doi.org/10.1016/j.trd.2013.07.002
  6. Hahn, J. S. and Lee, J. H.(2018), "Market Segmented Analysis of Electric Vehicle Purchasing Behavior in Seoul", Journal of Korean Society of Transportation, vol. 36 no. 2, pp.129-140. https://doi.org/10.7470/jkst.2018.36.2.129
  7. Hardman, S., Lee, J. H. and Tal, G.(2019), "How do drivers use automation? Insights from a survey of partially automated vehicle owners in the United States", Transportation Research Part A: Policy and Practice, vol. 129, pp.246-256. https://doi.org/10.1016/j.tra.2019.08.008
  8. Junquera, B., Moreno, B. and Alvarez, R.(2016), "Analyzing Consumer Attitudes Towards Electric Vehicle Purchasing Intentions in Spain: Technological Limitations and Vehicle Confidence", Technological Forecasting & Social Change, vol. 109, pp.6-14. https://doi.org/10.1016/j.techfore.2016.05.006
  9. Kang, C. G. and Jeon, S. Y.(2020), "Reduction of Particle Matters, Where Are Electric Vehicles Now (Fuel Cell Vehicles and Plug-in Electric Vehicles)?", Issues and Dignosises, no. 404, pp.1-25.
  10. Kim, D., Ko, J. and Park, Y.(2015), "Factors affecting electric vehicle sharing program participants' attitudes about car ownership and program participation", Transportation Research Part D: Transport and Environment, vol. 36, pp.96-106. https://doi.org/10.1016/j.trd.2015.02.009
  11. Kim, J., Rasouli, S. and Timmermans, H.(2014), "Expanding Scope of Hybrid Choice Models Allowing for Mixture of Social Influences and Latent Attitudes: Application to Intended Purchase of Electric Cars", Transportation Research Part A: Policy and Practice, vol. 69, pp.71-85. https://doi.org/10.1016/j.tra.2014.08.016
  12. Ko, J., Kim, D., Nam, D. and Lee, T.(2017), "Determining locations of charging stations for electric taxis using taxi operation data", Transportation Planning and Technology, vol. 40, no. 4, pp.420-433. https://doi.org/10.1080/03081060.2017.1300243
  13. Lee, G. H. and Park, J.(2020), "The Classification and Effect of News Users' 'News Media Repertoire' By Latent Class Analysis", Korean Journal of Communication & Information, vol. 99, pp.148-176. https://doi.org/10.46407/kjci.2020.02.99.148
  14. Lee, J. H., Chakraborty, D., Hardmanb, S. J. and Tal, G.(2020), "Exploring electric vehicle charging patterns: Mixed usage of charging infrastructure", Transportation Research Part D: Transport and Environment, vol. 79, 102249. https://doi.org/10.1016/j.trd.2020.102249
  15. Lee, J. H., Davis, A., Yoon, S. Y. and Goulias, K. G.(2017), "Exploring daily rhythms of interpersonal contacts: Time-of-day dynamics of human interactions with latent class cluster analysis", Transportation Research Record, vol. 2666 no. 1, pp.58-68. https://doi.org/10.3141/2666-07
  16. Lee, J. H., Yoon, S. Y., Yeon B. M. and Park, S.(2020), Development of User-centric Charging Infrastructure Policies for Rapid Adoption of Zero Emission Vehicles, Sejong: Korea Research Institute for Human Settlements.
  17. Lee, M. S. and Jang, Y. J.(2016.04), "Analysis of Status and Utility of Electric Car Charger in Jeju", Paper Presented at Korean Institute of Industrial Engineers Conference, pp.5150-5169.
  18. Lee, Y. G.(2013), UE-based Location Model of EV Rapid Charging Stations for Different Battery State-of-charge, Doctoral Dissertation, Seoul National University.
  19. Ministry of Environment(2014), A Study on the Construction of Charging Infrastructure for Urban Housing (공동주택 등 도시형 주택의 충전인프라 구축방안 연구).
  20. Ministry of Environment(2021), The 4th Master plan for eco-friendly vehicles 2021-2025 (제 4차 친환경차 기본계획 2021-2025).
  21. Ministry of Land, Infrastructure and Transport(2022), Total Registered Motor Vehicles.
  22. Oh, S. C. and Kim, J. M.(2009), "A Optimal Facility Location Using Set Covering and Minisum (Application to Optimal Location of 119 Eru)", Journal of Korean Society of Transportation, vol. 27, no. 4, pp.103-113.
  23. Park, K., Jeon, H., Jung, K. and Son, B.(2017), "Charging Behavior Analysis of Electric Vehicle", Journal of Korean Society of Transportation, vol. 35, no. 3, pp.210-219. https://doi.org/10.7470/jkst.2017.35.3.210
  24. Rudolph, C.(2016), "How Many Incentives for Electric Cars Affect Purchase Decisions?", Transport Policy, vol. 52, pp.113-120.
  25. Schauble, J., Kaschub, T., Ensslen, A., Jochem, P. and Fichtner, W.(2017), "Generating electric vehicle load profiles from empirical data of three EV fleets in Southwest Germany", Journal of Cleaner Production, vol. 150, pp.253-266. https://doi.org/10.1016/j.jclepro.2017.02.150
  26. Vermunt, J. K. and Magidson, J.(2002), "Latent class cluster analysis", Applied Latent Class Analysis, vol. 11, pp.89-106. https://doi.org/10.1017/CBO9780511499531.004
  27. Vermunt, J. K.(2010), "Latent class modeling with covariates: Two improved three-step approaches", Political Analysis, vol. 18, no. 4, pp.450-469. https://doi.org/10.1093/pan/mpq025