KYUNGPOOK Math. J. 62(2022), 193-204
https://doi.org/10.5666/KMJ.2022.62.1.193
pISSN 1225-6951 eISSN 0454-8124
(c) Kyungpook Mathematical Journal

Locating-Hop Domination in Graphs

Sergio R. Canoy, Jr.*
Department of Mathematics and Statistics, College of Science and Mathematics, Center for Graph Theory, Algebra, and Analysis, Premier Research Institute of Science and Mathematics, MSU-Iligan Institute of Technology, Andres Bonifacio Ave., Iligan City, Philippines
e-mail: sergio.canoy@g.msuiit.edu.ph
Gemma P. Salasalan
Department of Arts and Sciences, Institute of Teacher Education, Arts and Sciences, Davao del Sur State College, Matti, Digos City, Davao del Sur
e-mail: gemma.salasalan@g.msuiit.edu.ph

Abstract. A subset S of $V(G)$, where G is a simple undirected graph, is a hop dominating set if for each $v \in V(G) \backslash S$, there exists $w \in S$ such that $d_{G}(v, w)=2$ and it is a locatinghop set if $N_{G}(v, 2) \cap S \neq N_{G}(v, 2) \cap S$ for any two distinct vertices $u, v \in V(G) \backslash S$. A set $S \subseteq V(G)$ is a locating-hop dominating set if it is both a locating-hop and a hop dominating set of G. The minimum cardinality of a locating-hop dominating set of G, denoted by $\gamma_{l h}(G)$, is called the locating-hop domination number of G. In this paper, we investigate some properties of this newly defined parameter. In particular, we characterize the locating-hop dominating sets in graphs under some binary operations.

1. Introduction

Locating-domination in a graph, a variation of the standard domination, was defined by Slater et al. in [13] and [14]. For protection of a certain system or network, the problem of determining the location of monitoring devices (e.g. fire alarms or cameras) so as to identify the exact location of an intruder (e.g. fire, burglar) when a problem at a facility or system arises can be modelled by this concept. This parameter and some of its variations had been studied in [2], [3], [6], [7], and [8].

* Corresponding Author.

Received May 4, 2021; revised August 16, 2021; accepted October 7, 2021.
2020 Mathematics Subject Classification: 05C69.
Key words and phrases: locating-hop, hop domination, complement-locating, complement locating-dominating.
Research is funded by the MSU-Iligan Institute of Technology and the Department of Science and Technology(DOST), Philippines.

In 2015, Natarajan and Ayyaswamy [10] introduced and studied the concept of hop domination in a graph. This concept and some of its variations were also studied in [1], [4], [9], and [12].

Apart from other possible applications of the concept of locating-hop domination similar to those of the standard locating-domination, the concept can also be used for a social network application. For example, consider a certain company with a large number of employees and suppose the company's president decides to form an internal committee of evaluators to do an assessment of the employees' job performance and productivity for management purpose. To minimize possible biases that may occur in the process, it is imposed that an evaluator should neither be a close friend nor an enemy to any employee (an individual outside this committee) under his or her evaluation list and that no two employees are evaluated by exactly the same set of evaluators from the committee. Also, to save time, an employee needs to be evaluated by a nearest non-biased evaluator. Since these criteria may still allow at most one employee (a non-evaluator) to be unevaluated or unassessed, it is further imposed that every employee outside the committee must go through the evaluation process, i.e., nobody is left out unevaluated. To model this evaluation process, a social network can be constructed, where each employee (including members of the committee) is represented by a vertex and an edge between two employees is formed if the they are either close friends or enemies. With respect to this network, the first set of imposed guidelines in the aforementioned evaluation process would actually require that the set of evaluators satisfies the 'locating-hop' condition. The additional imposed guideline (to ensure completeness of the evaluation process) would necessitate that the set of evaluators is a 'hop dominating' set. This social network application is a slight modification of the one given by Desormeaux et al. in [5] for non-dominating sets in graphs.

In this paper, we define and do an initial study of the concept of locating-hop dominating set in a graph. As formally defined in a bit and as implicitly mentioned earlier, a locating-hop set is 'almost' a hop dominating set as it may allow at most a vertex outside the set to be 'hop undominated'. In a portion of this paper, one may find a result (a result that deals with the concept of locating-hop dominating on a disconnected graph) that does not hold when the condition 'locating-hop dominating set' is replaced by just 'locating hop set'. This somehow also makes 'locating-hop dominating set' a bit interesting concept to define and study.

Let G be a simple graph with vertex-set $V(G)$ and edge-set $E(G)$. For any two vertices $u, v \in V(G)$, the distance $d_{G}(u, v)$ between u and v is the length of a shortest $u-v$ path in G. Any $u-v$ path of length equal to $d_{G}(u, v)$ is called a geodesic $(u-v$ godesic). Two vertices u and v are neighbors (sometimes adjacent) if $u v \in E(G)$. The set of neighbors of a vertex u of G, denoted by $N_{G}(u)$, is called the open neighborhood of u in G. The closed neighborhood of u is the set $N_{G}[u]=N_{G}(u) \cup\{u\}$. The open neighborhood of $X \subseteq V(G)$ is the set $N_{G}(X)=\bigcup_{u \in X} N_{G}(u)$ and its closed neighborhood is the set $N_{G}[X]=N_{G}(X) \cup X$. The open hop neighborhood of u in G, denoted by $N_{G}(u, 2)$, is the set given by $N_{G}(u, 2)=\left\{w \in V(G): d_{G}(u, w)=2\right\}$ and
its closed hop neighborhood is $N_{G}[u, 2]=N_{G}(u, 2) \cup\{u\}$. The open hop neighborhood of $S \subseteq V(G)$ is the set $N_{G}(S, 2)=\bigcup_{u \in S} N_{G}(u, 2)$ and its closed hop neighborhood is the set $N_{G}[S, 2]=N_{G}(S, 2) \cup S$. The degree of vertex u in G, denoted by $\operatorname{deg}_{G}(u)$, is equal to $\left|N_{G}(u)\right|$.

A set $S \subseteq V(G)$ is a locating set of G if for any two distinct vertices $v, w \in$ $V(G) \backslash S, N_{G}(v) \cap S \neq N_{G}(w) \cap S$. A locating set S is a locating-dominating set of G if $N_{G}(v) \cap S \neq \varnothing$ for each $v \in V(G) \backslash S$. The smallest cardinality of a locating (resp. locating-dominating) set of G is denoted by $\ln (G)$ (resp. $\gamma_{L}(G)$). Any locating (resp. locating-dominating) set of G with cardinality $\ln (G)$ (resp. $\operatorname{gamma}_{L}(G)$) is called a $l n$-set (resp. γ_{L}-set) of G. We also point out that a locating set is 'nearly' or 'almost' a dominating set because it may allow at most a vertex in $V(G) \backslash S$ to be undominated. A study of the concept of locating set can also be found in [11].

A subset S of $V(G)$ is called a hop dominating set of G if $N_{G}[S, 2]=V(G)$, that is, for every $v \in V(G) \backslash S$, there exists $u \in S$ such that $d_{G}(u, v)=2$. The minimum cardinality of a hop dominating set of G, denoted by $\gamma_{h}(G)$, is called the hop domination number of G. Any hop dominating set of G with cardinality $\gamma(G)$ is called a γ_{h}-set of G.

A subset S of G is a locating-hop set of G if $N_{G}(u, 2) \cap S \neq N_{G}(v, 2) \cap S$ for every two distinct vertices u and v of $V(G) \backslash S$. A locating-hop set of G which is also a hop dominating set is called a locating-hop dominating set. The minimum cardinality of a locating-hop dominating set of G, denoted by $\gamma_{l h}(G)$, is called the locating-hop domination number of G.

A set $S \subseteq V(G)$ is a complement-locating set of G (or a locating set of \bar{G}) if for any two distinct vertices $v, w \in V(G) \backslash S, N_{\bar{G}}(v) \cap S=\left[V(G) \backslash N_{G}(v)\right] \cap S \neq$ $\left[V(G) \backslash N_{G}(w)\right] \cap S=N_{\bar{G}}(w) \cap S$. A complement-locating set S of G is called a complement locating-dominating set of G (or a locating-dominating set of \bar{G}) if for each $v \in V(G) \backslash S,\left[V(G) \backslash N_{G}(v)\right] \cap S=N_{\bar{G}}(v) \cap S \neq \varnothing$. The smallest cardinality of a complement-locating (resp. complement locating-dominating) set of G is denoted by $\operatorname{cln}(G)$ (resp. cldn (G)). Any complement-locating (resp. complement locatingdominating) set of G with cardinality $\operatorname{cln}(G)$ (resp. $\operatorname{cldn}(G)$) is called a cln-set (resp. a cldn-set) of G. Clearly, $\operatorname{cln}(G)=\ln (\bar{G})$ and $\operatorname{cldn}(G)=\gamma_{L}(\bar{G})$.

2. Results

Since any set S of size s has 2^{s} distinct subsets, it is easily observed from the definition that if S is locating-hop dominating of a graph G on n vertices, then the inequality $2^{s}>n-s$ is satisfied. We state this formally as a simple result.

Lemma 2.1. Let G be a connected graph on n vertices. If S is a locating-hop dominating set of G and $s=|S|$, then $n<2^{s}+s$.

Proposition 2.2. Let G be a connected graph on n vertices. Then $1 \leq \gamma_{l h}(G) \leq n$. Moreover,
(i) $\gamma_{l h}(G)=1$ if and only if G is the trivial graph;
(ii) $\gamma_{l h}(G)=n$ if and only if $G=K_{n}$.

Proof. Clearly, $1 \leq \gamma_{l h}(G) \leq n$.
(i) Suppose $\gamma_{l h}(G)=1$, say $S=\{u\}$ is a $\gamma_{l h}$-set of G. If G is a nontrivial connected graph, then there exists $v \in V(G) \cap N_{G}(u)$. This implies that S is not a hop dominating set of G, a contradiction. Therefore, G is the trivial graph. Clearly, if G is the trivial graph, then $\gamma_{l h}(G)=1$.
(ii) Suppose $\gamma_{l h}(G)=n$ and suppose further that $G \neq K_{n}$. Then there exist distinct vertices $v, w \in V(G)$ such that $d_{G}(v, w)=2$. Let $S=V(G) \backslash\{v\}$. Then S is a locating hop dominating set of G. Hence, $\gamma_{l h}(G) \leq|S|=n-1$, a contradiction. Therefore, $G=K_{n}$. The converse is clear.

Proposition 2.3. Let G be a connected graph of order n. If $\gamma_{l h}(G)=2$, then $2 \leq n \leq 5$. Moreover,
(i) if $n=2,3$, then $G=P_{2}$ and $G=P_{3}$, respectively;
(ii) if $n=4$, then $G=P_{4}$ or $G=C_{4}$; and
(iii) if $n=5$, then $G=C_{5}$ or G is (isomorphic to) the graph obtained from a cycle $C_{5}=\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right]$ by adding the edge $v_{3} v_{5}$, or G is (isomorphic to) the graph obtained from a cycle $C_{5}=\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right]$ by adding the edge $v_{3} v_{5}$ and removing the edge $v_{1} v_{2}$.

Proof. Suppose that $\gamma_{l h}(G)=2$ and let $S=\left\{v_{1}, v_{2}\right\}$ be a $\gamma_{l h}$-set of G. Clearly, $n \geq 2$. By Lemma 2.1, $n \leq 5$. Hence, $2 \leq n \leq 5$.

Clearly, (i) holds. Suppose $n=4$. Let $a, b \in V(G) \backslash S$. Since S is a hop dominating set, we may assume without loss of generality that $v_{1} \in N_{G}(a, 2) \cap S$. Suppose that $\left[a, x, v_{1}\right]$ is an $a-v_{1}$ geodesic. If $x=v_{2}$, then $v_{1} v_{2} \in E(G)$. It follows that $N_{G}(a, 2) \cap S=\left\{v_{1}\right\}$. Since S is a locating hop dominating set, $N_{G}(b, 2) \cap S=$ $\left\{v_{2}\right\}$ or $N_{G}(b, 2) \cap S=\left\{v_{1}, v_{2}\right\}$. Suppose $N_{G}(b, 2) \cap S \neq\left\{v_{2}\right\}$. Then $N_{G}(b, 2) \cap S=$ $\left\{v_{1}, v_{2}\right\}$. This implies that $a b \in E(G)$. Since $d_{G}\left(a, v_{2}\right)=d_{G}\left(v_{1}, v_{2}\right)=1$, it follows that $d_{G}\left(b, v_{1}\right)=3$, a contradiction. Therefore, $N_{G}(b, 2) \cap S=\left\{v_{2}\right\}$. Thus, G is $\left[b, a, v_{2}, v_{1}\right]$ or $\left[b, v_{1}, v_{2}, a\right]$ or $\left[b, a, v_{2}, v_{1}, b\right]$. Suppose now that $x=b$. Then this forces $N_{G}(b, 2) \cap S=\left\{v_{2}\right\}$ because S is a hop dominating set. If $v_{1} v_{2} \notin E(G)$, then $a v_{2} \in E(G)$ and $N_{G}(a, 2) \cap S=\left\{v_{1}\right\}$. It follows that $G=\left[v_{1}, b, a, v_{2}\right]=P_{4}$. Suppose $v_{1} v_{2} \in E(G)$. Then G is $\left[a, b, v_{1}, v_{2}\right]$ or $\left[a, b, v_{1}, v_{2}, a\right]$. Therefore, $G=P_{4}$ or $G=C_{4}$, showing that (ii) holds.

Next, suppose that $n=5$. Let $v_{3}, v_{4}, v_{5} \in V(G) \backslash S$. Since S is a locating hop dominating set, we may assume that $N_{G}\left(v_{3}, 2\right) \cap S=\left\{v_{1}\right\}, N_{G}\left(v_{5}, 2\right) \cap S=\left\{v_{2}\right\}$, and $N_{G}\left(v_{4}, 2\right) \cap S=\left\{v_{1}, v_{2}\right\}$. Suppose first that $v_{1} v_{2} \in E(G)$. Since $N_{G}\left(v_{4}, 2\right) \cap S=$ $\left\{v_{1}, v_{2}\right\}, v_{1} v_{4}, v_{2} v_{4} \notin E(G)$. It follows that $v_{3} v_{4}, v_{4} v_{5}, v_{2} v_{3}, v_{1} v_{5} \in E(G)$. If $v_{3} v_{5} \notin$ $E(G)$, then $G=\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right]=C_{5}$. If $v_{3} v_{5} \in E(G)$, then G is the graph obtained from the cycle $\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right]$ by adding the edge $v_{3} v_{5}$. Suppose that $v_{1} v_{2} \notin E(G)$. Again, it can be shown that $v_{3} v_{4}, v_{4} v_{5}, v_{2} v_{3}, v_{1} v_{5} \in E(G)$. Moreover, since $N_{G}\left(v_{3}, 2\right) \cap S=\left\{v_{1}\right\}$ and $N_{G}\left(v_{5}, 2\right) \cap S=\left\{v_{2}\right\}$, it follows that $v_{3} v_{5} \in E(G)$.

Thus, G is the graph obtained from the cycle $C_{5}=\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{1}\right]$ by adding the edge $v_{3} v_{5}$ and removing the edge $v_{1} v_{2}$. This proves (iii).

Theorem 2.4. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the distinct components of G, where $k \geq 2$. Then S is a locating hop dominating set of G if and only if $S_{j}=S \cap V\left(G_{j}\right)$ is a locating-hop dominating set of G_{j} for each $j \in\{1,2, \ldots, k\}$.

Proof. Suppose S is locating-hop dominating set of G and let $j \in\{1,2, \ldots, k\}$. Let $v \in V\left(G_{j}\right) \backslash S_{j}$. Since $v \notin S$ and S is a hop dominating set, there exists $w \in S$ such that $v \in N_{G}(w, 2)$. This implies that $w \in S_{j}$ and $v \in N_{G_{j}}(w, 2)$. This shows that S_{j} is a hop dominating set of G_{j}. Next, let $a, b \in V\left(G_{j}\right) \backslash S_{j}$ where $a \neq b$. Since S is locating-hop set

$$
N_{G_{j}}(a, 2) \cap S_{j}=N_{G}(a, 2) \cap S \neq N_{G}(b, 2) \cap S=N_{G_{j}}(b, 2) \cap S_{j} .
$$

Thus, S_{j} is a locating-hop dominating set of G_{j} for each $j \in\{1,2, \ldots, k\}$.
For the converse, suppose that $S_{j}=S \cap V\left(G_{j}\right)$ is a locating-hop dominating set of G_{j} for each $j \in\{1,2, \ldots, k\}$. Then clearly, S is a hop dominating set of G. Let $v, w \in V(G) \backslash S$ with $v \neq w$ and let G_{i} and G_{j} be the components of G with $v \in V\left(G_{i}\right) \backslash S_{i}$ and $w \in V\left(G_{j}\right) \backslash S_{j}$. Since S_{i} and S_{j} are locating-hop sets (where it may happen that $i=j$),

$$
N_{G}(a, 2) \cap S=N_{G_{i}}(v, 2) \cap S_{i} \neq N_{G_{j}}(w, 2) \cap S_{j}=N_{G}(w, 2) \cap S .
$$

Therefore, S is a locating-hop set of G.
It is worth mentioning that Theorem 2.4 does not hold if 'locating-hop dominating' is replaced by 'locating-hop'. Indeed, if there are two distinct locating sets S_{j} and S_{k} which have each a single vertex in $V\left(G_{j}\right) \backslash S_{j}$ and $V\left(G_{k}\right) \backslash S_{k}$, respectively, that are not hop-dominated in the respective components, then the set S cannot be a locating hop set of G.

The next result follows from Theorem 2.4.
Corollary 2.5. Let $G_{1}, G_{2}, \ldots, G_{k}$ be the distinct components of G. Then $\gamma_{l h}(G)=$ $\sum_{j=1}^{k} \gamma_{l h}\left(G_{j}\right)$.

As an immediate consequence of Proposition 2.2(ii) and Theorem 2.4, we have the next result.

Corollary 2.6. Let G be a graph of order n. Then $\gamma_{l h}(G)=n$ if and only if every component of G is complete. In particular, $\gamma_{l h}\left(K_{n}\right)=\gamma_{l h}\left(\bar{K}_{n}\right)=n$.

The next result is a general version (it includes disconnected graphs) of the one given in [11].

Theorem 2.7. Let G be graph of order $n \geq 2$. Then the following statements hold.
(i) $1 \leq \ln (G) \leq n-1$ and $\ln (G)=1$ if and only if $G \in\left\{K_{2}, \overline{K_{2}}, P_{3}, K_{1} \cup K_{2}\right\}$.
(ii) $\ln (G)=n-1$ if and only if $G=K_{n}$ or $G=\bar{K}_{n}$.

From the preceding result and the fact that $\operatorname{cln}(G)=\ln (\bar{G})$, we get the next result.

Corollary 2.8. Let G be graph of order $n \geq 2$. Then the following statements hold
(i) $1 \leq \operatorname{cln}(G) \leq n-1$ and $\operatorname{cln}(G)=1$ if and only if $G \in\left\{K_{2}, \overline{K_{2}}, P_{3}, K_{1} \cup K_{2}\right\}$.
(ii) $\operatorname{cln}(G)=n-1$ if and only if $G=K_{n}$ or $G=\bar{K}_{n}$.

The following relationship is obtained in [2].
Theorem 2.9. Let G be a connected graph of order $n \geq 2$. If $\ln (G)<\gamma_{L}(G)$, then $\gamma_{L}(G)=\ln (G)+1$.

It should be noted that Theorem 2.9 also holds for disconnected graphs. Hence, the next result is immediate.

Corollary 2.10. Let G be a graph of order $n \geq 2$. If $\operatorname{cln}(G)<\operatorname{cldn}(G)$, then $\operatorname{cldn}(G)=\gamma_{L}(\bar{G})=\ln (\bar{G})+1=\operatorname{cln}(G)+1$.

The join of two graphs G and H, denoted by $G+H$ is the graph with vertex set $V(G+H)=V(G) \cup V(H)$ and edge set $E(G+H)=E(G) \cup E(H) \cup\{u v: u \in$ $V(G), v \in V(H)\}$.

Theorem 2.11. Let G and H be any two graphs. Then $S \subseteq V(G+H)$ is a locating-hop dominating set of $G+H$ if and only if $S=S_{G} \cup S_{H}$ where S_{G} and S_{H} are complement locating-dominating sets of G and H (locating-dominating sets of \bar{G} and $\bar{H})$, respectively.

Proof. Suppose that S is a locating-hop dominating set of $G+H$. Let $S_{G}=V(G) \cap S$ and $S_{H}=V(H) \cap S$. Since S is a hop dominating set of $G+H, S_{G} \neq \varnothing$ and $S_{H} \neq \varnothing$. If $S_{G}=V(G)$, then it is a complement locating-dominating set of G. Suppose $S_{G} \neq V(G)$ and let $v \in V(G) \backslash S_{G}$. Since S is a hop dominating set, there exists $w \in S$ such that $d_{G+H}(w, v)=2$. Hence, $w \in S_{G} \backslash N_{G}(v)$. Next, let $x, y \in V(G) \backslash S_{G}$ where $x \neq y$. Since S is a hop locating set, $\left[V(G) \backslash N_{G}(x)\right] \cap S_{G}=$ $N_{G+H}(x, 2) \cap S \neq N_{G+H}(y, 2) \cap S=\left[V(G) \backslash N_{G}(y)\right] \cap S_{G}$, showing that S_{G} is a complement-locating set of G. Thus, S_{G} is a complement locating-dominating set of G. Similarly, S_{H} is a complement locating-dominating set of H.

For the converse, suppose that $S=S_{G} \cup S_{H}$ where S_{G} and S_{H} are complement locating-dominating sets of G and H, respectively. Let $v \in V(G+H) \backslash S$. Suppose $v \in V(G) \backslash S_{G}$. Then by assumption, there exists $z \in S_{G} \backslash N_{G}(v)$. It follows that $d_{G+H}(z, v)=2$. Similarly, if $v \in V(H) \backslash S_{H}$, then there exists $w \in S_{H}$ such that that $d_{G+H}(w, v)=2$. This shows that S is a hop dominating set of $G+H$. Now let $a, b \in V(G+H) \backslash S$ where $a \neq b$. Suppose that $a, b \in V(G) \backslash S_{G}$. Since S_{G} is
a complement-locating set of $G, N_{G+H}(a, 2) \cap S=\left[V(G) \backslash N_{G}(a)\right] \cap S_{G} \neq[V(G) \backslash$ $\left.N_{G}(b)\right] \cap S_{G}=N_{G+H}(b, 2) \cap S$. Similarly, $N_{G+H}(a, 2) \cap S=\left[V(H) \backslash N_{H}(a)\right] \cap S_{H} \neq$ $\left[V(H) \backslash N_{H}(b)\right] \cap S_{H}=N_{G+H}(b, 2) \cap S$ if $a, b \in V(H) \backslash S_{H}$. Suppose now that $a \in V(G) \backslash S_{G}$ and $b \in V(H) \backslash S_{H}$. Then $N_{G+H}(a, 2) \cap S=\left[V(G) \backslash N_{G}(a)\right] \cap S_{G} \neq$ $\left[V(H) \backslash N_{G}(a)\right] \cap S_{H}=N_{G+H}(b, 2) \cap S$. Therefore, S is a locating-hop dominating set of $G+H$.

Corollary 2.12. Let G be a graph and let n be a positive integer. Then $S \subseteq$ $V\left(K_{n}+G\right)$ is a locating hop dominating set of $K_{n}+G$ if and only if $S=V\left(K_{n}\right) \cup S_{G}$ where S_{G} is a complement locating-dominating set of G.

Proof. The only complement locating-dominating set of K_{n} is $V\left(K_{n}\right)$. Thus, by Theorem 2.11, the result follows.

The next results follow directly from Theorem 2.11 and Corollary 2.12.
Corollary 2.13. Let G and H be any two graphs. Then $\gamma_{l h}(G+H)=\operatorname{cldn}(G)+$ $\operatorname{cldn}(H)=\gamma_{L}(\bar{G})+\gamma_{L}(\bar{H})$.
Corollary 2.14. Let G be a graph and let n be a positive integer. Then $\gamma_{l h}\left(K_{n}+\right.$ $G)=n+\gamma_{L}(\bar{G})$.

The corona of graphs G and H, denoted by $G \circ H$, is the graph obtained from G by taking a copy H^{v} of H and forming the join $\langle v\rangle+H^{v}=v+H^{v}$ for each $v \in V(G)$.
Theorem 2.15. Let G be a non-trivial connected graph and let H be any graph. Then $S \subseteq V(G \circ H)$ is a locating-hop dominating set of $G \circ H$ if and only if $S=A \cup\left[\cup_{v \in V(G)} D_{v}\right]$ where
(i) $A \subseteq V(G)$ such that for any two distinct vertices $v, w \in V(G) \backslash A, N_{G}(v) \neq$ $N_{G}(w)$ or $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$;
(ii) D_{v} is a complement-locating set of H^{v} for each $v \in V(G)$;
(iii) D_{v} is a complement locating-dominating set of H^{v} for each $v \in V(G) \backslash N_{G}(A)$;
(iv) D_{w} is a dominating set of H^{w} for each $w \in V(G)$ such that $N_{G}(v)=\{w\}$ for some $v \in V(G) \backslash A$ and $N_{G}(w) \cap A=\varnothing$; and
(v) J if D_{v} is not a complement locating-dominating set of H^{v} for some $v \in V(G)$, then D_{w} is a complement locating-dominating set of H^{w} for each $w \in V(G) \backslash$ $\{v\}$ with $N_{G}(w) \cap A=N_{G}(v) \cap A$.

Proof. Suppose S is a locating-hop dominating set of $G \circ H$. Let $A=S \cap V(G)$ and let $D_{v}=S \cap V\left(H^{v}\right)$ for each $v \in V(G)$. Then $S=A \cup\left[\cup_{v \in V(G)} D_{v}\right]$. Let $v, w \in V(G) \backslash A$ with $v \neq w$. Since S is a hop-locating set,

$$
\begin{aligned}
{\left[N_{G}(v, 2) \cap A\right] \cup\left[\cup_{x \in N_{G}(v)} D_{x}\right] } & =N_{G \circ H}(v, 2) \cap S \\
& \neq N_{G \circ H}(w, 2) \cap S \\
& =\left[N_{G}(w, 2) \cap A\right] \cup\left[\cup_{y \in N_{G}(w)} D_{y}\right]
\end{aligned}
$$

This implies that $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$ or $N_{G}(v) \neq N_{G}(w)$, showing that (i) holds.

Next, let $v \in V(G)$ and let $a, b \in V\left(H^{v}\right) \backslash D_{v}$ with $a \neq b$. Since S is a locatinghop set,

$$
\begin{aligned}
&\left(\left[V\left(H^{v}\right) \backslash N_{H^{v}}(a)\right] \cap D_{v}\right) \cup\left[N_{G}(v) \cap A\right]=N_{G \circ H}(a, 2) \cap S \\
& \neq N_{G \circ H}(b, 2) \cap S=\left(\left[V\left(H^{v}\right) \backslash N_{H^{v}}(b)\right] \cap D_{v}\right) \cup\left[N_{G}(v) \cap A\right] .
\end{aligned}
$$

Hence,

$$
\left[V\left(H^{v}\right) \backslash N_{H^{v}}(a)\right] \cap D_{v} \neq\left[V\left(H^{v}\right) \backslash N_{H^{v}}(b)\right] \cap D_{v} .
$$

This shows that D_{v} is a complement-locating set of H^{v}. Hence, (ii) holds. Suppose $v \in V(G) \backslash N_{G}(A)$. Since S is a hop dominating set, D_{v} must be a complement locating-dominating set of H^{v}, showing that (iii) holds. To show (iv), suppose that $w \in V(G)$ such that $N_{G}(v)=\{w\}$ for some $v \in V(G) \backslash A$ and $N_{G}(w) \cap A=\varnothing$. If $D_{w}=V\left(H^{w}\right)$, then we are done. So suppose $D_{w} \neq V\left(H^{w}\right)$ and let $q \in V\left(H^{w}\right) \backslash D_{w}$. Then by assumption and the fact that S is a locating-hop set,

$$
D_{w}=N_{G \circ H}(v, 2) \cap S \neq N_{G \circ H}(q, 2) \cap S=\left[V\left(H^{w}\right) \backslash N_{H}(q)\right] \cap D_{w} .
$$

This implies that $N_{H}(q) \cap D_{w} \neq \varnothing$. This shows that D_{w} is a dominating set of H^{w}. Again, since S is a locating-hop set $G \circ H,(v)$ also holds.

For the converse, suppose that S is as described and satisfies properties $(i)-(v)$. Let $x \in V(G \circ H) \backslash S$ and let $v \in V(G)$ such that $x \in V\left(v+H^{v}\right)$. Suppose $x=v$. Then $v \notin A$. Let $w \in V(G) \cap N_{G}(v)$. Pick any $y \in D_{w}$. Then $y \in S \cap N_{G \circ H}(v, 2)$. Suppose $x \neq v$. Then $x \in V\left(H^{v}\right) \backslash D_{v}$. If $N_{G}(v) \cap A \neq \varnothing$, say $u \in N_{G}(v) \cap A$, then $u \in S \cap N_{G \circ H}(x, 2)$. If $N_{G}(v) \cap A=\varnothing$, then there exists $z \in\left[V\left(H^{v}\right) \backslash N_{H^{v}}(x)\right] \cap D_{v}$ by property (iii). Hence, there exists $z \in S \cap N_{G \circ H}(x, 2)$. This shows that S is a hop dominating set of $G \circ H$.

Now let $a, b \in V(G \circ H) \backslash S$ with $a \neq b$ and let $v, w \in V(G)$ such that $a \in$ $V\left(v+H^{v}\right)$ and $b \in V\left(w+H^{w}\right)$. Consider the following cases:
Case 1: $v=w$
Suppose $a, b \in V\left(H^{v}\right) \backslash D_{v}$. By (ii) and (iii), D_{v} is a complement locatingdominating set of H^{v}. Consequently, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose $a=v$ and $b \in V\left(H^{v}\right) \backslash D_{v}$. Pick any $z \in N_{G}(v)$. Since $D_{z} \subseteq N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$, it follows that $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.
Case 2: $v \neq w$
Suppose $a=v$ and $b=w$. Then $v, w \in V(G) \backslash A$. By property $(i), N_{G}(v) \neq$ $N_{G}(w)$ or $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$. If $N_{G}(v, 2) \cap A \neq N_{G}(w, 2) \cap A$, then $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose $N_{G}(v) \neq N_{G}(w)$. We may assume that that there exists $p \in N_{G}(v) \backslash N_{G}(w)$. Then $D_{p} \subseteq N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$. Hence, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.

Next, suppose that $a=v$ and $b \in V\left(H^{w}\right) \backslash D_{w}$ (or $b=w$ and $a \in V\left(H^{v}\right) \backslash$ $\left.D_{v}\right)$. If $\left|N_{G}(v)\right|>1$ or $v w \notin E(G)$, pick any $z \in N_{G}(v) \backslash\{w\}$. Then $D_{z} \subseteq$ $N_{G \circ H}(a, 2) \backslash N_{G \circ H}(b, 2)$. It follows that $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose that $N_{G}(v)=\{w\}$. If $N_{G}(w) \cap A \neq \varnothing$, then $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$
because $N_{G}(w) \cap A \subseteq N_{G \circ H}(b, 2) \backslash N_{G \circ H}(a, 2)$. If $N_{G}(w) \cap A=\varnothing$, then D_{w} is a dominating set of of H^{w} by (iv). Hence, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.

Finally, suppose that $a \in V\left(H^{v}\right) \backslash D_{v}$ and $b \in V\left(H^{w}\right) \backslash D_{w}$. If $\left[V\left(H^{v}\right) \backslash N_{H^{w}}(a)\right] \cap$ $D_{v} \neq \varnothing$ and $\left[V\left(H^{w}\right) \backslash N_{H^{w}}(b)\right] \cap D_{w} \neq \varnothing$, then $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. Suppose one, say $\left[V\left(H^{v}\right) \backslash N_{H^{w}}(a)\right] \cap D_{v}=\varnothing$. If $N_{G}(v) \cap A \neq N_{G}(w) \cap A$, then $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$. If $N_{G}(v) \cap A=N_{G}(w) \cap A$, then [$V\left(H^{w}\right) \backslash$ $\left.N_{H^{w}}(b)\right] \cap D_{w} \neq \varnothing$ by (v). Thus, $N_{G \circ H}(a, 2) \cap S \neq N_{G \circ H}(b, 2) \cap S$.

Accordingly, S is a locating-hop dominating set of $G \circ H$.
The lexicographic product of graphs G and H, denoted by $G[H]$, is the graph with vertex set $V(G[H])=V(G) \times V(H)$ such that $(v, a)(u, b) \in E(G[H])$ if and only if either $u v \in E(G)$ or $u=v$ and $a b \in E(H)$.

Note that every non-empty subset C of $V(G) \times V(H)$ can be expressed as $C=\cup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$.

Theorem 2.16. Let G and H be non-trivial connected graphs. Then $C=$ $\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$, where $S \subseteq V(G)$ and $T_{x} \subseteq V(H)$ for each $x \in S$, is a locating-hop dominating set of $G[H]$ if and only if the following conditions hold:
(i) $S=V(G)$
(ii) T_{x} is a complement-locating set of H for all $x \in S$.
(iii) If T_{x} is not complement locating-dominating for some $x \in S$, then T_{y} is complement locating-dominating for all $y \in S \backslash\{x\}$ with $N_{G}(x, 2)=N_{G}(y, 2)$.
(iv) T_{x} is a complement locating-dominating set of H for each $x \in S \backslash N_{G}(S, 2)$.

Proof. Suppose C is a locating-hop dominating set of $G[H]$. Suppose there exists $z \in V(G) \backslash S$. Pick distinct vertices $a, b \in V(H)$. Then $(z, a),(z, b) \in V(G[H]) \backslash C$ and $N_{G[H]}((z, a)) \cap C=\bigcup_{x \in N_{G}(z, 2) \cap S}\left[\{x\} \times T_{x}\right]=N_{G[H]}((z, b)) \cap C$. This implies that C is not a locating-hop set, contrary to our assumption. Thus, $S=V(G)$, showing that (i) holds.

Now let $x \in S$. Let $p, q \in V(H) \backslash T_{x}$ with $p \neq q$. Then $(x, p),(x, q) \in$ $V(G[H]) \backslash C$. Now, $N_{G[H]}((x, p), 2) \cap C=\left[\{x\} \times\left(V(H) \backslash N_{H}(p)\right)\right] \cap(\{x\} \times$ $\left.T_{x}\right) \cup\left[\cup_{w \in N_{G}(x, 2)}\left(\{w\} \times T_{w}\right)\right]$ and $N_{G[H]}((x, q), 2) \cap C=\left[\{x\} \times\left(V(H) \backslash N_{H}(q)\right)\right] \cap$ $\left(\{x\} \times T_{x}\right) \cup\left[\cup_{w \in N_{G}(x, 2)}\left(\{w\} \times T_{w}\right)\right]$. Since C is a locating-hop set, $[\{x\} \times(V(H) \backslash$ $\left.\left.N_{H}(p)\right)\right] \cap\left(\{x\} \times T_{x}\right) \neq\left[\{x\} \times\left(V(H) \backslash N_{H}(q)\right)\right] \cap\left(\{x\} \times T_{x}\right)$. This implies that $\left(V(H) \backslash N_{H}(p)\right) \cap T_{x} \neq\left(V(H) \backslash N_{H}(q)\right) \cap T_{x}$. Hence, T_{x} is a complement-locating set of H, showing that (ii) holds. Suppose there exists x such that T_{x} is not complement locating-dominating and let $y \in S \backslash\{x\}$ with $N_{G}(x, 2)=N_{G}(y, 2)$. Let $p \in V(H) \backslash T_{x}$ be such that $\left[V(H) \backslash N_{H}(p)\right] \cap T_{x}=\varnothing$ and let $q \in V(H) \backslash T_{y}$. Since C is a locating-hop dominating set, $N_{G}(x, 2)=N_{G}(y, 2)$, and $\left[V(H) \backslash N_{H}(p)\right] \cap T_{x}=\varnothing$, it follows that $\left[V(H) \backslash N_{H}(q)\right] \cap T_{y} \neq \varnothing$. This implies that T_{y} is a complement locating-dominating set of H, showing that (iii) holds.

Next, let $x \in S \backslash N_{G}(S, 2)$. If $T_{x}=V(H)$, then T_{x} is a complement locatingdominating set of H. So suppose that $T_{x} \neq V(H)$ and let $t \in V(H) \backslash T_{x}$.

Since C is hop dominating and $(x, t) \notin C$, there exists $(w, s) \in C$ such that $d_{G[H]}((x, t),(w, s))=2$. The condition $x \in S \backslash N_{G}(S, 2)$ would imply that $w=x$ and $s \in\left[V(H) \backslash N_{H}(t)\right] \cap T_{x}$. Hence, T_{x} is a complement locating-dominating set of H, showing that (iv) holds.

For the converse, suppose that C satisfies properties $(i)-(i v)$. Let $(x, a) \in$ $V(G[H]) \backslash C$. Then $a \in V(H) \backslash T_{x}$. If $x \in N_{G}(S, 2)$, then there exists $z \in N_{G}(x, 2)$. Let $b \in T_{z}$. Then $(z, b) \in C \cap N_{G[H]}((x, a), 2)$. Suppose $x \in S \backslash N_{G}(S, 2)$. By $(i v), T_{x}$ is a complement locating-dominating set of H. Hence, there exists $p \in\left[V(H) \backslash N_{H}(a)\right] \cap T_{x}$. This implies that $(x, p) \in C \cap N_{G[H]}((x, a), 2)$. Therefore, C is a hop dominating set of $G[H]$.

Next, let $(v, q),(w, s) \in V(G[H]) \backslash C$ with $(v, q) \neq(w, s)$. Then
$N_{G[H]}((v, q), 2) \cap C=\left[\{v\} \times\left(V(H) \backslash N_{H}(q)\right)\right] \cap\left(\{v\} \times T_{v}\right) \cup\left[\bigcup_{z \in N_{G}(v, 2)}\left[\{z\} \times T_{z}\right]\right.$,
and
$N_{G[H]}((w, s), 2) \cap C=\left[\{w\} \times\left(V(H) \backslash N_{H}(s)\right)\right] \cap\left(\{w\} \times T_{w}\right) \cup\left[\bigcup_{y \in N_{G}(w, 2)}\left[\{y\} \times T_{y}\right]\right.$.
Consider the following cases:
Case 1: $v=w$
Then $q, s \in V(H) \backslash T_{v}$ with $q \neq s$. By $(i i), T_{v}$ is a complement-locating set; hence, $\left[V(H) \backslash N_{H}(q)\right] \cap T_{v} \neq\left[V(H) \backslash N_{H}(s)\right] \cap T_{v}$. It follows that $N_{G[H]}((v, q), 2) \cap$ $C \neq N_{G[H]}((v, s), 2) \cap C$.
Case 2: $v \neq w$
Then $q \in V(H) \backslash T_{v}$ and $s \in V(H) \backslash T_{w}$. If $N_{G}(v, 2) \neq N_{G}(w, 2)$, then clearly, $N_{G[H]}((v, q), 2) \cap C \neq N_{G[H]}((w, s), 2) \cap C$. Suppose $N_{G}(v, 2)=N_{G}(w, 2)$. If T_{v} and T_{w} are both complement locating-dominating sets, then $N_{G[H]}((v, q), 2) \cap C \neq$ $N_{G[H]}((w, s), 2) \cap C$. Suppose T_{v} is not complement locating-dominating. Then T_{w} is complement locating-dominating by $(i i i)$. It follows that $N_{G[H]}((v, q), 2) \cap C \neq$ $N_{G[H]}((w, s), 2) \cap C$.

Accordingly, C is a locating-hop dominating set of $G[H]$.
A connected graph G is distance-two point determining if $N_{G}(x, 2) \neq N_{G}(y, 2)$ for any distinct vertices $x, y \in V(G)$.

Note that P_{4}, C_{4}, and the star $K_{1, n}$, where $n \geq 2$, are distance-two point determining.

Corollary 2.17. Let G and H be non-trivial connected graphs. Then $\gamma_{l h}(G[H]) \leq|V(G)| \operatorname{cldn}(H)=|V(G)| \gamma_{L}(\bar{H})$. If G is distance-two point determining and $\gamma(G) \neq 1$, then $\gamma_{l h}(G[H])=|V(G) \cdot| \operatorname{cln}(H)=|V(G)| \cdot \ln (\bar{H})$.

Proof. Let $S=V(G)$ and let T_{x} be a cldn-set of H for each $x \in V(G)$. By Theorem 2.16, $C=\bigcup_{x \in S}\left[\{x\} \times T_{x}\right]$ is a locating-hop dominating set of $G[H]$. It follows that $\gamma_{l h}(G[H]) \leq|C|=|V(G)| \operatorname{cldn}(H)$.

Next, suppose that G is distance-two point determining and $\gamma(G) \neq 1$. Let $S^{\prime}=V(G)$ and let R_{x} be a cln-set of H for each $x \in S$. Since $\gamma(G) \neq 1, x \in N_{G}(S, 2)$ for each $x \in S$. Thus, by Theorem 2.16, $C=\bigcup_{x \in S^{\prime}}\left[\{x\} \times R_{x}\right]$ is a locating-hop dominating set of $G[H]$. It follows that $\gamma_{l h}(G[H]) \leq|C|=|V(G)| \cdot c l n(H)$. Now, if $C_{0}=\bigcup_{x \in S_{0}}\left[\{x\} \times T_{x}\right]$ is a $\gamma_{l h}$-set of $G[H]$, then $S_{0}=V(G)$ and T_{x} is a complementlocating set of H for each $x \in V(G)$ by Theorem 2.16. Hence, $\gamma_{l h}(G[H])=\left|C_{0}\right|=$ $\sum_{x \in S_{0}}\left|T_{x}\right| \geq|V(G)| \cdot \operatorname{cln}(H)$. Therefore, $\gamma_{l h}(G[H])=|V(G)| \cdot \operatorname{cln}(H)$.

Corollary 2.18. Let G and H be non-trivial connected graphs. If G is distance-two point determining and $\gamma(G)=1$, then $\gamma_{l h}(G[H])=\operatorname{cldn}(H)+(|V(G)|-1) \operatorname{cln}(H)$.

Proof. Let $D_{G}=\{v \in V(G):\{v\}$ is a dominating set of $G\}$. Since G is distancetwo point determining, it follows that $\left|D_{G}\right|=1$. Set $S=V(G)$. Let T_{v} be a $c l d n$-set of H for $v \in D_{G}$ and let T_{x} be a cln-set of H for each $x \in V(G) \backslash\{v\}$. Then, by Theorem 2.16, $C=\left[\bigcup_{x \in S \backslash\{v\}}\left(\{x\} \times T_{x}\right)\right] \cup\left(\{v\} \times T_{v}\right)$ is a locating-hop dominating set of $G[H]$. Hence, $\gamma_{l h}(G[H]) \leq|C|=\operatorname{cldn}(H)+(|V(G)|-1) \operatorname{cln}(H)$.

Suppose now that $C^{*}=\left[\bigcup_{x \in S^{*}}\left(\{x\} \times R_{x}\right)\right]$ is a $\gamma_{l h^{\prime}}$-set of $G[H]$. Again, there exists a unique vertex v such that $\{v\}$ is a dominating set of G. By Theorem 2.16, $S^{*}=V(G), R_{v}$ is a complement locating-dominating set and R_{x} is a complementlocating set of H for each $x \in V(G) \backslash\{v\}$. Thus, $\gamma_{l h}(G[H])=\left|C^{*}\right|=\left|R_{v}\right|+$ $\sum_{x \in S^{*} \backslash\{v\}}\left|R_{x}\right| \geq \operatorname{cldn}(H)+(|V(G)|-1) \operatorname{cln}(H)$. Therefore, $\gamma_{l h}(G[H])=\operatorname{cldn}(H)+$ $(|V(G)|-1) \ln (H)$ as asserted.

Corollary 2.19. Let G be a non-trivial connected distance-two point determining graph and let $p \geq 2$ be a positive integer.

$$
\gamma_{l h}\left(G\left[K_{p}\right]\right)= \begin{cases}|V(G)|(p-1) & \text { if } \gamma(G) \neq 1 \\ (p-1)|V(G)|+1 & \text { if } \gamma(G)=1\end{cases}
$$

Proof. Suppose first that $\gamma(G) \neq 1$. By Corollary 2.17 and the fact that $\operatorname{cn}\left(K_{p}\right)=$ $\ln \left(\bar{K}_{p}=p-1\right.$, it follows that $\gamma_{l h}\left(G\left[K_{p}\right]\right)=|V(G)|(p-1)$.

Next, suppose that $\gamma(G)=1$. By Corollary 2.18 and the fact that $\operatorname{cldn}\left(K_{p}\right)=$ $\gamma_{L} \bar{K}_{p}=p$, we have $\gamma_{l h}\left(G\left[K_{p}\right]\right)=p+(p-1)(|V(G)|-1)=(p-1)|V(G)|+1$.

Corollary 2.20. Let H be a non-trivial connected graph and let $p \geq 2$ be a positive integer. Then $\gamma_{l h}\left(K_{p}[H]\right)=p . c l d n(H)$.

Proof. Let $G=K_{p}$. Then v is a dominating vertex of G for each $v \in V(G)$. Thus, if $C_{0}=\bigcup_{z \in S_{0}}\left[\{z\} \times T_{z}\right]$ is a $\gamma_{l h}$-set of $G[H]$, then $S_{0}=V(G)$ and each T_{z} is a $c l d n$-set of H by Theorem 2.16. Consequently, $\gamma_{l h}\left(K_{p}[H]\right)=p . c l d n(H)$.

Acknowledgments. The authors are very much grateful to the referee for the corrections and suggestions he or she made in the initial manuscript. This paper had been improved due to the additional inputs and insights the referee had given to the authors.

References

[1] S. Ayyaswamy, B. Krishnakumari, B. Natarjan and Y. Venkatakrishnan, Bounds on the hop domination number of a tree, Proc. Indian Acad. Sci. Math. Sci., 125(4)(2015), 449-455.
[2] S. R. Canoy, Jr. and G. Malacas, Determining the intruder's location in a given network: Locating-dominating sets in a graph, NRCP Research Journal, 13(1)(2013), 1-8.
[3] S. R. Canoy, Jr. and G. Malacas, Differentiating-dominating sets in graphs under binary operations, Tamkang J. Math., 46(1)(2015), 51-60.
[4] S. R. Canoy, Jr., R. Mollejon and J. G. Canoy, Hop dominating sets in graphs under binary operations, Eur. J. Pure Appl. Math., 12(4)(2019), 1455-1463.
[5] W. J. Desormeaux, T. W. Haynes and M. A. Henning, A note on non-dominating set partitions in graphs, Discuss. Math. Graph Theory, 36(2016), 1043-1050.
[6] A. Finbow and B. L. Hartnell, On locating dominating sets and well-covered graphs, Congr. Numer., 65(1988), 191-200.
[7] J. Gimbel, B. Van Gorden, M. Nicolescu, C. Umstead and N. Vaiana, Location with dominating sets, Congr. Numer., 151(2001), 129-144.
[8] T. W. Haynes, M. A. Henning and J. Howard, Locating and total dominating sets in trees, Discrete Appl. Math., 154(8)(2006), 1293-1300.
[9] M. Henning and N. Rad, On 2-step and hop dominating sets in graphs, Graphs Combin., 33(4) (2017), 913-927.
[10] C. Natarajan and S. Ayyaswamy, Hop domination in graphs II, Versita, 23(2)(2015), 187-199.
[11] S. Omega and S. Canoy, Jr., Locating sets in a graph, Applied Mathematical Sciences, 9(60)(2015), 2957-2964.
[12] Y. Pabilona and H. Rara, Connected hop domination in graphs under some binary operations, Asian-Eur. J. Math., 11(5)(2018), 1850075-1-1850075-11.
[13] P. J. Slater, Dominating and location in acyclic graphs, Networks, 17(1987), 55-64.
[14] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22(4)(1988), 445-455.

