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Abstract. A subset S of V (G), where G is a simple undirected graph, is a hop dominating

set if for each v ∈ V (G) \S, there exists w ∈ S such that dG(v, w) = 2 and it is a locating-

hop set if NG(v, 2) ∩ S 6= NG(v, 2) ∩ S for any two distinct vertices u, v ∈ V (G) \ S. A

set S ⊆ V (G) is a locating-hop dominating set if it is both a locating-hop and a hop

dominating set of G. The minimum cardinality of a locating-hop dominating set of G,

denoted by γlh(G), is called the locating-hop domination number of G. In this paper, we

investigate some properties of this newly defined parameter. In particular, we characterize

the locating-hop dominating sets in graphs under some binary operations.

1. Introduction

Locating-domination in a graph, a variation of the standard domination, was
defined by Slater et al. in [13] and [14]. For protection of a certain system or
network, the problem of determining the location of monitoring devices (e.g. fire
alarms or cameras) so as to identify the exact location of an intruder (e.g. fire,
burglar) when a problem at a facility or system arises can be modelled by this
concept. This parameter and some of its variations had been studied in [2], [3], [6],
[7], and [8].
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In 2015, Natarajan and Ayyaswamy [10] introduced and studied the concept
of hop domination in a graph. This concept and some of its variations were also
studied in [1], [4], [9], and [12].

Apart from other possible applications of the concept of locating-hop domina-
tion similar to those of the standard locating-domination, the concept can also be
used for a social network application. For example, consider a certain company with
a large number of employees and suppose the company’s president decides to form
an internal committee of evaluators to do an assessment of the employees’ job per-
formance and productivity for management purpose. To minimize possible biases
that may occur in the process, it is imposed that an evaluator should neither be a
close friend nor an enemy to any employee (an individual outside this committee)
under his or her evaluation list and that no two employees are evaluated by exactly
the same set of evaluators from the committee. Also, to save time, an employee
needs to be evaluated by a nearest non-biased evaluator. Since these criteria may
still allow at most one employee (a non-evaluator) to be unevaluated or unassessed,
it is further imposed that every employee outside the committee must go through
the evaluation process, i.e., nobody is left out unevaluated. To model this evalua-
tion process, a social network can be constructed, where each employee (including
members of the committee) is represented by a vertex and an edge between two
employees is formed if the they are either close friends or enemies. With respect to
this network, the first set of imposed guidelines in the aforementioned evaluation
process would actually require that the set of evaluators satisfies the ‘locating-hop’
condition. The additional imposed guideline (to ensure completeness of the eval-
uation process) would necessitate that the set of evaluators is a ‘hop dominating’
set. This social network application is a slight modification of the one given by
Desormeaux et al. in [5] for non-dominating sets in graphs.

In this paper, we define and do an initial study of the concept of locating-hop
dominating set in a graph. As formally defined in a bit and as implicitly mentioned
earlier, a locating-hop set is ‘almost’ a hop dominating set as it may allow at most a
vertex outside the set to be ‘hop undominated’. In a portion of this paper, one may
find a result (a result that deals with the concept of locating-hop dominating on a
disconnected graph) that does not hold when the condition ‘locating-hop dominating
set’ is replaced by just ‘locating hop set’. This somehow also makes ‘locating-hop
dominating set’ a bit interesting concept to define and study.

Let G be a simple graph with vertex-set V (G) and edge-set E(G). For any two
vertices u, v ∈ V (G), the distance dG(u, v) between u and v is the length of a shortest
u-v path in G. Any u-v path of length equal to dG(u, v) is called a geodesic (u-v
godesic). Two vertices u and v are neighbors (sometimes adjacent) if uv ∈ E(G).
The set of neighbors of a vertex u of G, denoted by NG(u), is called the open
neighborhood of u inG. The closed neighborhood of u is the setNG[u] = NG(u)∪{u}.
The open neighborhood of X ⊆ V (G) is the set NG(X) =

⋃
u∈X

NG(u) and its closed

neighborhood is the set NG[X] = NG(X)∪X. The open hop neighborhood of u in G,
denoted by NG(u, 2), is the set given by NG(u, 2) = {w ∈ V (G) : dG(u,w) = 2} and
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its closed hop neighborhood is NG[u, 2] = NG(u, 2)∪{u}. The open hop neighborhood
of S ⊆ V (G) is the set NG(S, 2) =

⋃
u∈S

NG(u, 2) and its closed hop neighborhood is

the set NG[S, 2] = NG(S, 2) ∪ S. The degree of vertex u in G, denoted by degG(u),
is equal to |NG(u)|.

A set S ⊆ V (G) is a locating set of G if for any two distinct vertices v, w ∈
V (G)\S, NG(v)∩S 6= NG(w)∩S. A locating set S is a locating-dominating set ofG if
NG(v)∩ S 6= ∅ for each v ∈ V (G) \ S. The smallest cardinality of a locating (resp.
locating-dominating) set of G is denoted by ln(G) (resp. γL(G)). Any locating
(resp. locating-dominating) set of G with cardinality ln(G) (resp. gammaL(G)) is
called a ln-set (resp. γL-set) of G. We also point out that a locating set is ‘nearly’
or ’almost’ a dominating set because it may allow at most a vertex in V (G) \ S to
be undominated. A study of the concept of locating set can also be found in [11].

A subset S of V (G) is called a hop dominating set of G if NG[S, 2] = V (G),
that is, for every v ∈ V (G) \ S, there exists u ∈ S such that dG(u, v) = 2. The
minimum cardinality of a hop dominating set of G, denoted by γh(G), is called the
hop domination number of G. Any hop dominating set of G with cardinality γ(G)
is called a γh-set of G.

A subset S of G is a locating-hop set of G if NG(u, 2) ∩ S 6= NG(v, 2) ∩ S for
every two distinct vertices u and v of V (G) \ S. A locating-hop set of G which is
also a hop dominating set is called a locating-hop dominating set. The minimum
cardinality of a locating-hop dominating set of G, denoted by γlh(G), is called the
locating-hop domination number of G.

A set S ⊆ V (G) is a complement-locating set of G (or a locating set of G) if
for any two distinct vertices v, w ∈ V (G) \ S, NG(v) ∩ S = [V (G) \ NG(v)] ∩ S 6=
[V (G) \ NG(w)] ∩ S = NG(w) ∩ S. A complement-locating set S of G is called a
complement locating-dominating set of G (or a locating-dominating set of G) if for
each v ∈ V (G)\S, [V (G)\NG(v)]∩S = NG(v)∩S 6= ∅. The smallest cardinality of
a complement-locating (resp. complement locating-dominating) set of G is denoted
by cln(G) (resp. cldn(G)). Any complement-locating (resp. complement locating-
dominating) set of G with cardinality cln(G) (resp. cldn(G)) is called a cln-set
(resp. a cldn-set) of G. Clearly, cln(G) = ln(G) and cldn(G) = γL(G).

2. Results

Since any set S of size s has 2s distinct subsets, it is easily observed from the
definition that if S is locating-hop dominating of a graph G on n vertices, then the
inequality 2s > n− s is satisfied. We state this formally as a simple result.

Lemma 2.1. Let G be a connected graph on n vertices. If S is a locating-hop
dominating set of G and s = |S|, then n < 2s + s.

Proposition 2.2. Let G be a connected graph on n vertices. Then 1 ≤ γlh(G) ≤ n.
Moreover,

(i) γlh(G) = 1 if and only if G is the trivial graph;
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(ii) γlh(G) = n if and only if G = Kn.

Proof. Clearly, 1 ≤ γlh(G) ≤ n.
(i) Suppose γlh(G) = 1, say S = {u} is a γlh-set of G. If G is a nontrivial

connected graph, then there exists v ∈ V (G) ∩NG(u). This implies that S is not a
hop dominating set of G, a contradiction. Therefore, G is the trivial graph. Clearly,
if G is the trivial graph, then γlh(G) = 1.

(ii) Suppose γlh(G) = n and suppose further that G 6= Kn. Then there exist
distinct vertices v, w ∈ V (G) such that dG(v, w) = 2. Let S = V (G) \ {v}. Then S
is a locating hop dominating set of G. Hence, γlh(G) ≤ |S| = n−1, a contradiction.
Therefore, G = Kn. The converse is clear.

Proposition 2.3. Let G be a connected graph of order n. If γlh(G) = 2, then
2 ≤ n ≤ 5. Moreover,

(i) if n = 2, 3, then G = P2 and G = P3, respectively;

(ii) if n = 4, then G = P4 or G = C4; and

(iii) if n = 5, then G = C5 or G is (isomorphic to) the graph obtained from a
cycle C5 = [v1, v2, v3, v4, v5, v1] by adding the edge v3v5, or G is (isomorphic
to) the graph obtained from a cycle C5 = [v1, v2, v3, v4, v5, v1] by adding the
edge v3v5 and removing the edge v1v2.

Proof. Suppose that γlh(G) = 2 and let S = {v1, v2} be a γlh-set of G. Clearly,
n ≥ 2. By Lemma 2.1, n ≤ 5. Hence, 2 ≤ n ≤ 5.

Clearly, (i) holds. Suppose n = 4. Let a, b ∈ V (G) \ S. Since S is a hop
dominating set, we may assume without loss of generality that v1 ∈ NG(a, 2) ∩ S.
Suppose that [a, x, v1] is an a-v1 geodesic. If x = v2, then v1v2 ∈ E(G). It follows
that NG(a, 2)∩ S = {v1}. Since S is a locating hop dominating set, NG(b, 2)∩ S =
{v2} or NG(b, 2)∩S = {v1, v2}. Suppose NG(b, 2)∩S 6= {v2}. Then NG(b, 2)∩S =
{v1, v2}. This implies that ab ∈ E(G). Since dG(a, v2) = dG(v1, v2) = 1, it follows
that dG(b, v1) = 3, a contradiction. Therefore, NG(b, 2) ∩ S = {v2}. Thus, G is
[b, a, v2, v1] or [b, v1, v2, a] or [b, a, v2, v1, b]. Suppose now that x = b. Then this
forces NG(b, 2) ∩ S = {v2} because S is a hop dominating set. If v1v2 /∈ E(G),
then av2 ∈ E(G) and NG(a, 2) ∩ S = {v1}. It follows that G = [v1, b, a, v2] = P4.
Suppose v1v2 ∈ E(G). Then G is [a, b, v1, v2] or [a, b, v1, v2, a]. Therefore, G = P4

or G = C4, showing that (ii) holds.
Next, suppose that n = 5. Let v3, v4, v5 ∈ V (G) \ S. Since S is a locating hop

dominating set, we may assume that NG(v3, 2) ∩ S = {v1}, NG(v5, 2) ∩ S = {v2},
and NG(v4, 2)∩S = {v1, v2}. Suppose first that v1v2 ∈ E(G). Since NG(v4, 2)∩S =
{v1, v2}, v1v4, v2v4 /∈ E(G). It follows that v3v4, v4v5, v2v3, v1v5 ∈ E(G). If v3v5 /∈
E(G), then G = [v1, v2, v3, v4, v5, v1] = C5. If v3v5 ∈ E(G), then G is the graph
obtained from the cycle [v1, v2, v3, v4, v5, v1] by adding the edge v3v5. Suppose that
v1v2 /∈ E(G). Again, it can be shown that v3v4, v4v5, v2v3, v1v5 ∈ E(G). Moreover,
since NG(v3, 2) ∩ S = {v1} and NG(v5, 2) ∩ S = {v2}, it follows that v3v5 ∈ E(G).
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Thus, G is the graph obtained from the cycle C5 = [v1, v2, v3, v4, v5, v1] by adding
the edge v3v5 and removing the edge v1v2. This proves (iii).

Theorem 2.4. Let G1, G2, . . . , Gk be the distinct components of G, where k ≥ 2.
Then S is a locating hop dominating set of G if and only if Sj = S ∩ V (Gj) is a
locating-hop dominating set of Gj for each j ∈ {1, 2, . . . , k}.

Proof. Suppose S is locating-hop dominating set of G and let j ∈ {1, 2, . . . , k}. Let
v ∈ V (Gj) \Sj . Since v /∈ S and S is a hop dominating set, there exists w ∈ S such
that v ∈ NG(w, 2). This implies that w ∈ Sj and v ∈ NGj

(w, 2). This shows that
Sj is a hop dominating set of Gj . Next, let a, b ∈ V (Gj) \ Sj where a 6= b. Since S
is locating-hop set

NGj (a, 2) ∩ Sj = NG(a, 2) ∩ S 6= NG(b, 2) ∩ S = NGj (b, 2) ∩ Sj .

Thus, Sj is a locating-hop dominating set of Gj for each j ∈ {1, 2, . . . , k}.
For the converse, suppose that Sj = S ∩ V (Gj) is a locating-hop dominating

set of Gj for each j ∈ {1, 2, . . . , k}. Then clearly, S is a hop dominating set of G.
Let v, w ∈ V (G) \ S with v 6= w and let Gi and Gj be the components of G with
v ∈ V (Gi) \ Si and w ∈ V (Gj) \ Sj . Since Si and Sj are locating-hop sets (where
it may happen that i = j),

NG(a, 2) ∩ S = NGi(v, 2) ∩ Si 6= NGj (w, 2) ∩ Sj = NG(w, 2) ∩ S.

Therefore, S is a locating-hop set of G.

It is worth mentioning that Theorem 2.4 does not hold if ‘locating-hop dominat-
ing’ is replaced by ‘locating-hop’. Indeed, if there are two distinct locating sets Sj

and Sk which have each a single vertex in V (Gj) \ Sj and V (Gk) \ Sk, respectively,
that are not hop-dominated in the respective components, then the set S cannot be
a locating hop set of G.

The next result follows from Theorem 2.4.

Corollary 2.5. Let G1, G2, . . . , Gk be the distinct components of G. Then γlh(G) =∑k
j=1 γlh(Gj).

As an immediate consequence of Proposition 2.2(ii) and Theorem 2.4, we have
the next result.

Corollary 2.6. Let G be a graph of order n. Then γlh(G) = n if and only if every
component of G is complete. In particular, γlh(Kn) = γlh(Kn) = n.

The next result is a general version (it includes disconnected graphs) of the one
given in [11].

Theorem 2.7. Let G be graph of order n ≥ 2. Then the following statements hold.
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(i) 1 ≤ ln(G) ≤ n− 1 and ln(G) = 1 if and only if G ∈ {K2,K2, P3,K1 ∪K2}.

(ii) ln(G) = n− 1 if and only if G = Kn or G = Kn.

From the preceding result and the fact that cln(G) = ln(G), we get the next
result.

Corollary 2.8. Let G be graph of order n ≥ 2. Then the following statements hold.

(i) 1 ≤ cln(G) ≤ n− 1 and cln(G) = 1 if and only if G ∈ {K2,K2, P3,K1 ∪K2}.

(ii) cln(G) = n− 1 if and only if G = Kn or G = Kn.

The following relationship is obtained in [2].

Theorem 2.9. Let G be a connected graph of order n ≥ 2. If ln(G) < γL(G), then
γL(G) = ln(G) + 1.

It should be noted that Theorem 2.9 also holds for disconnected graphs. Hence,
the next result is immediate.

Corollary 2.10. Let G be a graph of order n ≥ 2. If cln(G) < cldn(G), then
cldn(G) = γL(G) = ln(G) + 1 = cln(G) + 1.

The join of two graphs G and H, denoted by G + H is the graph with vertex
set V (G+H) = V (G) ∪ V (H) and edge set E(G+H) = E(G) ∪E(H) ∪ {uv : u ∈
V (G), v ∈ V (H)}.

Theorem 2.11. Let G and H be any two graphs. Then S ⊆ V (G + H) is a
locating-hop dominating set of G+H if and only if S = SG ∪SH where SG and SH

are complement locating-dominating sets of G and H (locating-dominating sets of
G and H ), respectively.

Proof. Suppose that S is a locating-hop dominating set ofG+H. Let SG = V (G)∩S
and SH = V (H) ∩ S. Since S is a hop dominating set of G + H, SG 6= ∅ and
SH 6= ∅. If SG = V (G), then it is a complement locating-dominating set of G.
Suppose SG 6= V (G) and let v ∈ V (G) \ SG. Since S is a hop dominating set,
there exists w ∈ S such that dG+H(w, v) = 2. Hence, w ∈ SG \ NG(v). Next, let
x, y ∈ V (G)\SG where x 6= y. Since S is a hop locating set, [V (G)\NG(x)]∩SG =
NG+H(x, 2) ∩ S 6= NG+H(y, 2) ∩ S = [V (G) \ NG(y)] ∩ SG, showing that SG is a
complement-locating set of G. Thus, SG is a complement locating-dominating set
of G. Similarly, SH is a complement locating-dominating set of H.

For the converse, suppose that S = SG ∪SH where SG and SH are complement
locating-dominating sets of G and H, respectively. Let v ∈ V (G+H) \S. Suppose
v ∈ V (G) \ SG. Then by assumption, there exists z ∈ SG \NG(v). It follows that
dG+H(z, v) = 2. Similarly, if v ∈ V (H) \ SH , then there exists w ∈ SH such that
that dG+H(w, v) = 2. This shows that S is a hop dominating set of G + H. Now
let a, b ∈ V (G + H) \ S where a 6= b. Suppose that a, b ∈ V (G) \ SG. Since SG is
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a complement-locating set of G, NG+H(a, 2) ∩ S = [V (G) \NG(a)] ∩ SG 6= [V (G) \
NG(b)]∩SG = NG+H(b, 2)∩S. Similarly, NG+H(a, 2)∩S = [V (H)\NH(a)]∩SH 6=
[V (H) \ NH(b)] ∩ SH = NG+H(b, 2) ∩ S if a, b ∈ V (H) \ SH . Suppose now that
a ∈ V (G) \SG and b ∈ V (H) \SH . Then NG+H(a, 2)∩S = [V (G) \NG(a)]∩SG 6=
[V (H) \NG(a)]∩ SH = NG+H(b, 2)∩ S. Therefore, S is a locating-hop dominating
set of G+H.

Corollary 2.12. Let G be a graph and let n be a positive integer. Then S ⊆
V (Kn+G) is a locating hop dominating set of Kn+G if and only if S = V (Kn)∪SG

where SG is a complement locating-dominating set of G.

Proof. The only complement locating-dominating set of Kn is V (Kn). Thus, by
Theorem 2.11, the result follows.

The next results follow directly from Theorem 2.11 and Corollary 2.12.

Corollary 2.13. Let G and H be any two graphs. Then γlh(G+H) = cldn(G) +
cldn(H) = γL(G) + γL(H).

Corollary 2.14. Let G be a graph and let n be a positive integer. Then γlh(Kn +
G) = n+ γL(G).

The corona of graphs G and H, denoted by G ◦H, is the graph obtained from
G by taking a copy Hv of H and forming the join 〈v〉 + Hv = v + Hv for each
v ∈ V (G).

Theorem 2.15. Let G be a non-trivial connected graph and let H be any graph.
Then S ⊆ V (G ◦ H) is a locating-hop dominating set of G ◦ H if and only if
S = A ∪ [∪v∈V (G)Dv] where

(i) A ⊆ V (G) such that for any two distinct vertices v, w ∈ V (G) \ A, NG(v) 6=
NG(w) or NG(v, 2) ∩A 6= NG(w, 2) ∩A;

(ii) Dv is a complement-locating set of Hv for each v ∈ V (G);

(iii) Dv is a complement locating-dominating set of Hv for each v ∈ V (G)\NG(A);

(iv) Dw is a dominating set of Hw for each w ∈ V (G) such that NG(v) = {w}
for some v ∈ V (G) \A and NG(w) ∩A = ∅; and

(v) ] if Dv is not a complement locating-dominating set of Hv for some v ∈ V (G),
then Dw is a complement locating-dominating set of Hw for each w ∈ V (G)\
{v} with NG(w) ∩A = NG(v) ∩A.

Proof. Suppose S is a locating-hop dominating set of G ◦ H. Let A = S ∩ V (G)
and let Dv = S ∩ V (Hv) for each v ∈ V (G). Then S = A ∪ [∪v∈V (G)Dv]. Let
v, w ∈ V (G) \A with v 6= w. Since S is a hop-locating set,

[NG(v, 2) ∩A] ∪ [∪x∈NG(v)Dx] = NG◦H(v, 2) ∩ S
6= NG◦H(w, 2) ∩ S
= [NG(w, 2) ∩A] ∪ [∪y∈NG(w)Dy].
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This implies that NG(v, 2) ∩ A 6= NG(w, 2) ∩ A or NG(v) 6= NG(w), showing that
(i) holds.

Next, let v ∈ V (G) and let a, b ∈ V (Hv) \Dv with a 6= b. Since S is a locating-
hop set,

([V (Hv) \NHv (a)] ∩Dv) ∪ [NG(v) ∩A] = NG◦H(a, 2) ∩ S

6= NG◦H(b, 2) ∩ S = ([V (Hv) \NHv (b)] ∩Dv) ∪ [NG(v) ∩A].

Hence,
[V (Hv) \NHv (a)] ∩Dv 6= [V (Hv) \NHv (b)] ∩Dv.

This shows that Dv is a complement-locating set of Hv. Hence, (ii) holds. Suppose
v ∈ V (G) \ NG(A). Since S is a hop dominating set, Dv must be a complement
locating-dominating set of Hv, showing that (iii) holds. To show (iv), suppose that
w ∈ V (G) such that NG(v) = {w} for some v ∈ V (G) \ A and NG(w) ∩ A = ∅. If
Dw = V (Hw), then we are done. So suppose Dw 6= V (Hw) and let q ∈ V (Hw)\Dw.
Then by assumption and the fact that S is a locating-hop set,

Dw = NG◦H(v, 2) ∩ S 6= NG◦H(q, 2) ∩ S = [V (Hw) \NH(q)] ∩Dw.

This implies that NH(q)∩Dw 6= ∅. This shows that Dw is a dominating set of Hw.
Again, since S is a locating-hop set G ◦H, (v) also holds.

For the converse, suppose that S is as described and satisfies properties (i)-(v).
Let x ∈ V (G ◦H) \ S and let v ∈ V (G) such that x ∈ V (v +Hv). Suppose x = v.
Then v /∈ A. Let w ∈ V (G) ∩NG(v). Pick any y ∈ Dw. Then y ∈ S ∩NG◦H(v, 2).
Suppose x 6= v. Then x ∈ V (Hv) \Dv. If NG(v)∩A 6= ∅, say u ∈ NG(v)∩A, then
u ∈ S∩NG◦H(x, 2). If NG(v)∩A = ∅, then there exists z ∈ [V (Hv)\NHv (x)]∩Dv

by property (iii). Hence, there exists z ∈ S ∩ NG◦H(x, 2). This shows that S is a
hop dominating set of G ◦H.

Now let a, b ∈ V (G ◦ H) \ S with a 6= b and let v, w ∈ V (G) such that a ∈
V (v +Hv) and b ∈ V (w +Hw). Consider the following cases:
Case 1: v = w

Suppose a, b ∈ V (Hv) \ Dv. By (ii) and (iii), Dv is a complement locating-
dominating set of Hv. Consequently, NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S. Suppose
a = v and b ∈ V (Hv)\Dv. Pick any z ∈ NG(v). SinceDz ⊆ NG◦H(a, 2)\NG◦H(b, 2),
it follows that NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S.
Case 2: v 6= w

Suppose a = v and b = w. Then v, w ∈ V (G) \ A. By property (i), NG(v) 6=
NG(w) or NG(v, 2) ∩ A 6= NG(w, 2) ∩ A. If NG(v, 2) ∩ A 6= NG(w, 2) ∩ A, then
NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S. Suppose NG(v) 6= NG(w). We may assume that
that there exists p ∈ NG(v) \NG(w). Then Dp ⊆ NG◦H(a, 2) \NG◦H(b, 2). Hence,
NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S.

Next, suppose that a = v and b ∈ V (Hw) \ Dw (or b = w and a ∈ V (Hv) \
Dv). If |NG(v)| > 1 or vw /∈ E(G), pick any z ∈ NG(v) \ {w}. Then Dz ⊆
NG◦H(a, 2) \NG◦H(b, 2). It follows that NG◦H(a, 2)∩S 6= NG◦H(b, 2)∩S. Suppose
that NG(v) = {w}. If NG(w) ∩ A 6= ∅, then NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S
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because NG(w) ∩ A ⊆ NG◦H(b, 2) \ NG◦H(a, 2). If NG(w) ∩ A = ∅, then Dw is a
dominating set of of Hw by (iv). Hence, NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S.

Finally, suppose that a ∈ V (Hv)\Dv and b ∈ V (Hw)\Dw. If [V (Hv)\NHw(a)]∩
Dv 6= ∅ and [V (Hw) \NHw(b)] ∩Dw 6= ∅, then NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S.
Suppose one, say [V (Hv) \ NHw(a)] ∩ Dv = ∅. If NG(v) ∩ A 6= NG(w) ∩ A, then
NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S. If NG(v) ∩ A = NG(w) ∩ A, then [V (Hw) \
NHw(b)] ∩Dw 6= ∅ by (v). Thus, NG◦H(a, 2) ∩ S 6= NG◦H(b, 2) ∩ S.

Accordingly, S is a locating-hop dominating set of G ◦H.

The lexicographic product of graphs G and H, denoted by G[H], is the graph
with vertex set V (G[H]) = V (G) × V (H) such that (v, a)(u, b) ∈ E(G[H]) if and
only if either uv ∈ E(G) or u = v and ab ∈ E(H).

Note that every non-empty subset C of V (G) × V (H) can be expressed as
C = ∪x∈S [{x} × Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S.

Theorem 2.16. Let G and H be non-trivial connected graphs. Then C =⋃
x∈S [{x}× Tx], where S ⊆ V (G) and Tx ⊆ V (H) for each x ∈ S, is a locating-hop

dominating set of G[H] if and only if the following conditions hold:

(i) S = V (G)

(ii) Tx is a complement-locating set of H for all x ∈ S.

(iii) If Tx is not complement locating-dominating for some x ∈ S, then Ty is
complement locating-dominating for all y ∈ S\{x} with NG(x, 2) = NG(y, 2).

(iv) Tx is a complement locating-dominating set of H for each x ∈ S \NG(S, 2).

Proof. Suppose C is a locating-hop dominating set of G[H]. Suppose there exists
z ∈ V (G) \ S. Pick distinct vertices a, b ∈ V (H). Then (z, a), (z, b) ∈ V (G[H]) \ C
and NG[H]((z, a)) ∩ C =

⋃
x∈NG(z,2)∩S [{x} × Tx] = NG[H]((z, b)) ∩ C. This implies

that C is not a locating-hop set, contrary to our assumption. Thus, S = V (G),
showing that (i) holds.

Now let x ∈ S. Let p, q ∈ V (H) \ Tx with p 6= q. Then (x, p), (x, q) ∈
V (G[H]) \ C. Now, NG[H]((x, p), 2) ∩ C = [{x} × (V (H) \ NH(p))] ∩ ({x} ×
Tx) ∪ [∪w∈NG(x,2)({w} × Tw)] and NG[H]((x, q), 2) ∩C = [{x} × (V (H) \NH(q))] ∩
({x}× Tx)∪ [∪w∈NG(x,2)({w}× Tw)]. Since C is a locating-hop set, [{x}× (V (H) \
NH(p))] ∩ ({x} × Tx) 6= [{x} × (V (H) \ NH(q))] ∩ ({x} × Tx). This implies that
(V (H) \NH(p)) ∩ Tx 6= (V (H) \NH(q)) ∩ Tx. Hence, Tx is a complement-locating
set of H, showing that (ii) holds. Suppose there exists x such that Tx is not com-
plement locating-dominating and let y ∈ S \ {x} with NG(x, 2) = NG(y, 2). Let
p ∈ V (H)\Tx be such that [V (H)\NH(p)]∩Tx = ∅ and let q ∈ V (H)\Ty. Since C is
a locating-hop dominating set, NG(x, 2) = NG(y, 2), and [V (H) \NH(p)]∩Tx = ∅,
it follows that [V (H) \ NH(q)] ∩ Ty 6= ∅. This implies that Ty is a complement
locating-dominating set of H, showing that (iii) holds.

Next, let x ∈ S \ NG(S, 2). If Tx = V (H), then Tx is a complement locating-
dominating set of H. So suppose that Tx 6= V (H) and let t ∈ V (H) \ Tx.
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Since C is hop dominating and (x, t) /∈ C, there exists (w, s) ∈ C such that
dG[H]((x, t), (w, s)) = 2. The condition x ∈ S \ NG(S, 2) would imply that w = x
and s ∈ [V (H) \ NH(t)] ∩ Tx. Hence, Tx is a complement locating-dominating set
of H, showing that (iv) holds.

For the converse, suppose that C satisfies properties (i)-(iv). Let (x, a) ∈
V (G[H]) \C. Then a ∈ V (H) \Tx. If x ∈ NG(S, 2), then there exists z ∈ NG(x, 2).
Let b ∈ Tz. Then (z, b) ∈ C ∩ NG[H]((x, a), 2). Suppose x ∈ S \ NG(S, 2).
By (iv), Tx is a complement locating-dominating set of H. Hence, there exists
p ∈ [V (H) \NH(a)]∩Tx. This implies that (x, p) ∈ C ∩NG[H]((x, a), 2). Therefore,
C is a hop dominating set of G[H].

Next, let (v, q), (w, s) ∈ V (G[H]) \ C with (v, q) 6= (w, s). Then

NG[H]((v, q), 2) ∩ C = [{v} × (V (H) \NH(q))] ∩ ({v} × Tv) ∪ [
⋃

z∈NG(v,2)

[{z} × Tz],

and

NG[H]((w, s), 2)∩C = [{w}× (V (H) \NH(s))]∩ ({w}× Tw)∪ [
⋃

y∈NG(w,2)

[{y}× Ty].

Consider the following cases:
Case 1: v = w

Then q, s ∈ V (H) \ Tv with q 6= s. By (ii), Tv is a complement-locating set;
hence, [V (H)\NH(q)]∩Tv 6= [V (H)\NH(s)]∩Tv. It follows that NG[H]((v, q), 2)∩
C 6= NG[H]((v, s), 2) ∩ C.
Case 2: v 6= w

Then q ∈ V (H) \ Tv and s ∈ V (H) \ Tw. If NG(v, 2) 6= NG(w, 2), then clearly,
NG[H]((v, q), 2) ∩ C 6= NG[H]((w, s), 2) ∩ C. Suppose NG(v, 2) = NG(w, 2). If Tv
and Tw are both complement locating-dominating sets, then NG[H]((v, q), 2) ∩C 6=
NG[H]((w, s), 2)∩C. Suppose Tv is not complement locating-dominating. Then Tw
is complement locating-dominating by (iii). It follows that NG[H]((v, q), 2) ∩ C 6=
NG[H]((w, s), 2) ∩ C.

Accordingly, C is a locating-hop dominating set of G[H].

A connected graph G is distance-two point determining if NG(x, 2) 6= NG(y, 2)
for any distinct vertices x, y ∈ V (G).

Note that P4, C4, and the star K1,n, where n ≥ 2, are distance-two point
determining.

Corollary 2.17. Let G and H be non-trivial connected graphs. Then
γlh(G[H]) ≤ |V (G)|cldn(H) = |V (G)|γL(H). If G is distance-two point deter-
mining and γ(G) 6= 1, then γlh(G[H]) = |V (G).|cln(H) = |V (G)|.ln(H).

Proof. Let S = V (G) and let Tx be a cldn-set of H for each x ∈ V (G). By Theorem
2.16, C =

⋃
x∈S [{x}× Tx] is a locating-hop dominating set of G[H]. It follows that

γlh(G[H]) ≤ |C| = |V (G)|cldn(H).
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Next, suppose that G is distance-two point determining and γ(G) 6= 1. Let
S′ = V (G) and letRx be a cln-set ofH for each x ∈ S. Since γ(G) 6= 1, x ∈ NG(S, 2)
for each x ∈ S. Thus, by Theorem 2.16, C =

⋃
x∈S′ [{x} × Rx] is a locating-hop

dominating set of G[H]. It follows that γlh(G[H]) ≤ |C| = |V (G)|.cln(H). Now, if
C0 =

⋃
x∈S0

[{x}×Tx] is a γlh-set of G[H], then S0 = V (G) and Tx is a complement-
locating set of H for each x ∈ V (G) by Theorem 2.16. Hence, γlh(G[H]) = |C0| =∑

x∈S0
|Tx| ≥ |V (G)|.cln(H). Therefore, γlh(G[H]) = |V (G)|.cln(H).

Corollary 2.18. Let G and H be non-trivial connected graphs. If G is distance-two
point determining and γ(G) = 1, then γlh(G[H]) = cldn(H) + (|V (G)| − 1)cln(H).

Proof. Let DG = {v ∈ V (G) : {v} is a dominating set of G}. Since G is distance-
two point determining, it follows that |DG| = 1. Set S = V (G). Let Tv be a cldn-set
of H for v ∈ DG and let Tx be a cln-set of H for each x ∈ V (G) \ {v}. Then, by
Theorem 2.16, C = [

⋃
x∈S\{v}({x}×Tx)]∪ ({v}×Tv) is a locating-hop dominating

set of G[H]. Hence, γlh(G[H]) ≤ |C| = cldn(H) + (|V (G)| − 1)cln(H).
Suppose now that C∗ = [

⋃
x∈S∗({x} × Rx)] is a γlh-set of G[H]. Again, there

exists a unique vertex v such that {v} is a dominating set of G. By Theorem 2.16,
S∗ = V (G), Rv is a complement locating-dominating set and Rx is a complement-
locating set of H for each x ∈ V (G) \ {v}. Thus, γlh(G[H]) = |C∗| = |Rv| +∑

x∈S∗\{v} |Rx| ≥ cldn(H)+(|V (G)|−1)cln(H). Therefore, γlh(G[H]) = cldn(H)+

(|V (G)| − 1)cln(H) as asserted.

Corollary 2.19. Let G be a non-trivial connected distance-two point determining
graph and let p ≥ 2 be a positive integer.

γlh(G[Kp]) =

{
|V (G)|(p− 1) if γ(G) 6= 1

(p− 1)|V (G)|+ 1 if γ(G) = 1,

Proof. Suppose first that γ(G) 6= 1. By Corollary 2.17 and the fact that cln(Kp) =
ln(Kp = p− 1, it follows that γlh(G[Kp]) = |V (G)|(p− 1).

Next, suppose that γ(G) = 1. By Corollary 2.18 and the fact that cldn(Kp) =
γLKp = p, we have γlh(G[Kp]) = p+ (p− 1)(|V (G)| − 1) = (p− 1)|V (G)|+ 1.

Corollary 2.20. Let H be a non-trivial connected graph and let p ≥ 2 be a positive
integer. Then γlh(Kp[H]) = p.cldn(H).

Proof. Let G = Kp. Then v is a dominating vertex of G for each v ∈ V (G). Thus,
if C0 =

⋃
z∈S0

[{z} × Tz] is a γlh-set of G[H], then S0 = V (G) and each Tz is a
cldn-set of H by Theorem 2.16. Consequently, γlh(Kp[H]) = p.cldn(H).
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