DOI QR코드

DOI QR Code

Roles of flower scent in bee-flower mediations: a review

  • Bisrat, Daniel (Department of Plant Medicals, Andong National University) ;
  • Jung, Chuleui (Department of Plant Medicals, Andong National University)
  • Received : 2021.09.29
  • Accepted : 2021.11.15
  • Published : 2022.03.31

Abstract

Background: Bees and flowering plants associations were initially began during the early Cretaceous, 120 million years ago. This coexistence has led to a mutual relationship where the plant serves as food and in return, the bee help them their reproduction. Animals pollinate about 75% of food crops worldwide, with bees as the world's primary pollinator. In general, bees rely on flower scents to locate blooming flowers as visual clue is limited and also their host plants from a distance. In this review, an attempt is made to collect some relevant 107 published papers from three scientific databases, Google Scholar, Scopus, and Web of Science database, covering the period from 1959 to 2021. Results: Flowering plants are well documented to actively emit volatile organic compounds (VOCs). However, only a few of them are important for eliciting behavioral responses in bees. In this review, fifty-three volatile organic compounds belonging to different class of compounds, mainly terpenoids, benzenoids, and volatile fatty acid derivatives, is compiled here from floral scents that are responsible for eliciting behavioral responses in bees. Bees generally use honest floral signals to locate their host plants with nectar and pollen-rich flowers. Thus, honest signaling mechanism plays a key role in maintaining mutualistic plant-pollinator associations. Conclusions: Considering the fact that floral scents are the primary attractants, understanding and identification of VOCs from floral scent in plant-pollinator networks are crucial to improve crop pollination. Interestingly, current advances in both VOCs scent gene identification and their biosynthetic pathways make it possible to manipulate particular VOCs in plant, and this eventually may lead to increase in crop productivity.

Keywords

Acknowledgement

DB and CJ are deeply grateful to Insect ecology lab in Andong National University, South Korea.

References

  1. Abbas F, Ke Y, Yu R, Yue Y, Amanullah S, Jahangir MM, et al. Volatile terpenoids: multiple functions, biosynthesis, modulation and manipulation by genetic engineering. Planta. 2017;246(5):803-16. https://doi.org/10.1007/s00425-017-2749-x.
  2. Allsopp PG, Cherry RH. Attraction of Apis mellifera L. (Hymenoptera: Apidae) to volatile compounds. Aust J Entomol. 1991;30(3):219-20. https://doi.org/10.1111/j.1440-6055.1991.tb00416.x.
  3. Andrews ES, Theis N, Adler LS. Pollinator and herbivore attraction to cucurbita floral volatiles. J Chem Ecol. 2007;33(9):1682-91. https://doi.org/10.1007/s10886-007-9337-7.
  4. Arenas A, Farina WM. Learned olfactory cues affect pollen-foraging preferences in honeybees, Apis mellifera. Anim Behav. 2012;83(4):1023-33. https://doi.org/10.1016/j.anbehav.2012.01.026.
  5. Ayasse M, Schiestl FP, Paulus HF, Lofstedt C, Hansson B, Ibarra F, et al. Evolution of reproductive strategies in the sexually deceptive orchid Ophrys sphegodes: how does flower-specific variation of odor signals influence reproductive success? Evolution. 2000;54(6):1995-2006. https://doi.org/10.1111/j.0014-3820.2000.tb01243.x.
  6. Bascompte J. Mutualism and biodiversity. Curr Biol. 2019;29(11):R467-70. https://doi.org/10.1016/j.cub.2019.03.062.
  7. Belcher MS, Mahinthakumar J, Keasling JD. New frontiers: harnessing pivotal advances in microbial engineering for the biosynthesis of plant-derived terpenoids. Curr Opin Biotechnol. 2020;65:88-93. https://doi.org/10.1016/j.copbio.2020.02.001.
  8. Bergstrom G, Dobson HE, Groth I. Spatial fragrance patterns within the flowers of Ranunculus acris (Ranunculaceae). Plant Syst Evol. 1995;195(3):221-42. https://doi.org/10.1007/BF00989298.
  9. Bolstad GH, Armbruster WS, Pelabon C, Perez-Barrales R, Hansen TF. Direct selection at the blossom level on floral reward by pollinators in a natural population of Dalechampia schottii: full-disclosure honesty? New Phytol. 2010;188(2):370-84. https://doi.org/10.1111/j.1469-8137.2010.03429.x.
  10. Borg-Karlson AK, Tengo J. Odor mimetism?: Key substances in Ophrys lutea-Andrena pollination relationship (Orchidaceae: Andrenidae). J Chem Ecol. 1986;12(9):1927-41. https://doi.org/10.1007/BF01041856.
  11. Borg-Karlson AK. Chemical and ethological studies of pollination in the genus Ophrys (orchidaceae). Phytochemistry. 1990;29(5):1359-87. https://doi.org/10.1016/0031-9422(90)80086-V.
  12. Cane JH, Sipes S. Characterizing floral specialization by bees: analytical methods and a revised lexicon for oligolecty. In: Ollerton J, Waser NM, editors. Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press; 2006. p. 99-122.
  13. Carvalho AT, Dotterl S, Schlindwein C. An aromatic volatile attracts oligolectic bee pollinators in an interdependent bee-plant relationship. J Chem Ecol. 2014;40(10):1126-34. https://doi.org/10.1007/s10886-014-0510-5.
  14. Cheng Y, Zhang Z, Jia Y, Chen L, Yu H. Odour composition variation at different stages of Ficus hispida inflorescence and the attraction to pollinators. J Trop Subtrop Bot. 2019;27(3):299-308.
  15. Chittka L, Wells H. Color vision in bees: mechanisms, ecology and evolution. In: Prete FR, editor. Complex worlds from simpler nervous systems. Cambridge: MIT Press; 2004. p. 165-91.
  16. Christianson DW. Correction to structural and chemical biology of terpenoid cyclases. Chem Rev. 2018;118(24):11795. https://doi.org/10.1021/acs.chemrev.8b00682.
  17. Clarke D, Whitney H, Sutton G, Robert D. Detection and learning of floral electric fields by bumblebees. Science. 2013;340(6128):66-9. https://doi.org/10.1126/science.1230883.
  18. Cordeiro GD, Pinheiro M, Dotterl S, Alves-Dos-Santos I. Pollination of Campomanesia phaea (Myrtaceae) by night-active bees: a new nocturnal pollination system mediated by floral scent. Plant Biol (Stuttg). 2017;19(2):132-9. https://doi.org/10.1111/plb.12520.
  19. Cseke LJ, Kaufman PB, Kirakosyan A. The biology of essential oils in the pollination of flowers. Nat Prod Commun. 2007;2(12):1317-36. https://doi.org/10.1177/1934578X0700201225.
  20. Dobson HE, Bergstrom G. The ecology and evolution of pollen odors. Plant Syst Evol. 2000;222(1-4):63-87. https://doi.org/10.1007/BF00984096.
  21. Dobson HE, Danielson EM, Wesep IDV. Pollen odor chemicals as modulators of bumble bee foraging on Rosa rugosa Thunb. (Rosaceae). Plant Species Biol. 1999;14(2):153-66. https://doi.org/10.1046/j.1442-1984.1999.00020.x.
  22. Dobson HE. Relationship between floral fragrance composition and type of pollinator. In: Dudareva N, Pichersky E, editors. Biology of floral scent. Boca Raton: CRC Press; 2006. p. 147-98. https://doi.org/10.1201/9781420004007.
  23. Dotterl S, Fussel U, Jurgens A, Aas G. 1,4-Dimethoxybenzene, a floral scent compound in willows that attracts an oligolectic bee. J Chem Ecol. 2005;31(12):2993-8. https://doi.org/10.1007/s10886-005-9152-y.
  24. Dotterl S, Gluck U, Jurgens A, Woodring J, Aas G. Floral reward, advertisement and attractiveness to honey bees in dioecious Salix caprea. PLoS One. 2014;9(3):e93421. https://doi.org/10.1371/journal.pone.0093421.
  25. Dotterl S, Jurgens A. Spatial fragrance patterns in flowers of Silene latifolia: lilac compounds as olfactory nectar guides? Plant Syst Evol. 2005;255(1):99-109. https://doi.org/10.1007/s00606-005-0344-2.
  26. Dotterl S, Schaffler I. Flower scent of floral oil-producing Lysimachia punctata as attractant for the oil-bee Macropis fulvipes. J Chem Ecol. 2007;33(2):441-5. https://doi.org/10.1007/s10886-006-9237-2.
  27. Endress PK. Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge University Press; 1996.
  28. Engel MS. A new interpretation of the oldest fossil bee (Hymenoptera, Apidae). Am Mus Novit. 2000;3296:1-11. https://doi.org/10.1206/0003-0082(2000)3296<0001:ANIOTO>2.0.CO;2
  29. Farre-Armengol G, Filella I, Llusia J, Penuelas J. β-ocimene, a key floral and foliar volatile involved in multiple interactions between plants and other organisms. Molecules. 2017;22(7):1148. https://doi.org/10.3390/molecules22071148.
  30. Feussner I, Wasternack C. The lipoxygenase pathway. Annu Rev Plant Biol. 2002;53(1):275-97. https://doi.org/10.1146/annurev.arplant.53.100301.135248.
  31. Fraenkel GS. The raison d'etre of secondary plant substances; these odd chemicals arose as a means of protecting plants from insects and now guide insects to food. Science. 1959;129(3361):1466-70. https://doi.org/10.1126/science.129.3361.1466.
  32. Galen C, Kaczorowski R, Todd SL, Geib J, Raguso RA. Dosage-dependent impacts of a floral volatile compound on pollinators, larcenists, and the potential for floral evolution in the alpine skypilot Polemonium viscosum. Am Nat. 2011;177(2):258-72. https://doi.org/10.1086/657993.
  33. Galen C, Miller Z, Lynn A, Axe M, Holden S, Storks L, et al. Pollination on the dark side: acoustic monitoring reveals impacts of a total solar eclipse on flight behavior and activity schedule of foraging bees. Ann Entomol Soc Am. 2019;112(1):20-6. https://doi.org/10.1093/aesa/say035.
  34. Gerlach G, Schill R. Composition of orchid scents attracting euglossine bees. Bot Acta. 1991;104(5):379-84. https://doi.org/10.1111/j.1438-8677.1991.tb00245.x.
  35. Giuliani C, Giovanetti M, Lupi D, Mesiano MP, Barilli R, Ascrizzi R, et al. Tools to tie: flower characteristics, VOC emission profile, and glandular trichomes of two Mexican Salvia species to attract bees. Plants (Basel). 2020;9(12):1645. https://doi.org/10.3390/plants9121645.
  36. Hammer KA, Carson CF, Riley TV. Antifungal activity of the components of Melaleuca alternifolia (tea tree) oil. J Appl Microbiol. 2003;95(4):853-60. https://doi.org/10.1046/j.1365-2672.2003.02059.x.
  37. Hansen DM, Olesen JM, Mione T, Johnson SD, Muller CB. Coloured nectar: distribution, ecology, and evolution of an enigmatic floral trait. Biol Rev Camb Philos Soc. 2007;82(1):83-111. https://doi.org/10.1111/j.1469-185X.2006.00005.x.
  38. Henning JA, Teuber LR. Cornbined gas chromatography-electroantennogram characterization of alfalfa floral volatiles recognized by honey bees (Hymenoptera: Apidae). J Econ Entomol. 1992;85(1):226-32. https://doi.org/10.1093/jee/85.1.226.
  39. Hetherington-Rauth MC, Ramirez SR. Evolution and diversity of floral scent chemistry in the euglossine bee-pollinated orchid genus Gongora. Ann Bot. 2016;118(1):135-48. https://doi.org/10.1093/aob/mcw072.
  40. Holopainen JK, Himanen SJ, Yuan J, Chen F, Stewart CN. Ecological functions of terpenoids in changing climates. In: Ramawat KG, Merillon JM, editors. Natural products. Heidelberg: Springer; 2013. p. 2913-40. https://doi.org/10.1007/978-3-642-22144-6_129.
  41. Hopkins M, Hopkins H, Sothers C. Nocturnal pollination of Parkia velutina by Megalopta bees in Amazonia and its possible significance in the evolution of chiropterophily. J Trop Ecol. 2000;16(5):733-46. https://doi.org/10.1017/S0266467400001681.
  42. Howell AD, Alarcon R. Osmia bees (Hymenoptera: Megachilidae) can detect nectar-rewarding flowers using olfactory cues. Anim Behav. 2007;74(2):199-205. https://doi.org/10.1016/j.anbehav.2006.11.012.
  43. Huang M, Sanchez-Moreiras AM, Abel C, Sohrabi R, Lee S, Gershenzon J, et al. The major volatile organic compound emitted from Arabidopsis thaliana flowers, the sesquiterpene (E)-β-caryophyllene, is a defense against a bacterial pathogen. New Phytol. 2012;193(4):997-1008. https://doi.org/10.1111/j.1469-8137.2011.04001.x.
  44. Junker RR, Gershenzon J, Unsicker SB. Floral odor bouquet loses its ant repellent properties after inhibition of terpene biosynthesis. J Chem Ecol. 2011;37(12):1323-31. https://doi.org/10.1007/s10886-011-0043-0.
  45. Karunanithi PS, Zerbe P. Terpene synthases as metabolic gatekeepers in the evolution of plant terpenoid chemical diversity. Front Plant Sci. 2019;10:1166. https://doi.org/10.3389/fpls.2019.01166.
  46. Kelber A, Warrant EJ, Pfaff M, Wallen R, Theobald JC, Wcislo WT, et al. Light intensity limits foraging activity in nocturnal and crepuscular bees. Behav Ecol. 2006;17(1):63-72. https://doi.org/10.1093/beheco/arj001.
  47. Klatt BK, Burmeister C, Westphal C, Tscharntke T, von Fragstein M. Flower volatiles, crop varieties and bee responses. PLoS One. 2013;8(8):e72724. https://doi.org/10.1371/journal.pone.0072724.
  48. Klein AM, Vaissiere BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, et al. Importance of pollinators in changing landscapes for world crops. Proc Biol Sci. 2007;274(1608):303-13. https://doi.org/10.1098/rspb.2006.3721.
  49. Knauer AC, Schiestl FP. Bees use honest floral signals as indicators of reward when visiting flowers. Ecol Lett. 2015;18(2):135-43. https://doi.org/10.1111/ele.12386.
  50. Knoll F, Santos LM. Orchid bee baits attracting bees of the genus Megalopta (Hymenoptera, Halictidae) in Bauru region, Sao Paulo, Brazil: abundance, seasonality, and the importance of odors for dim-light bees. Rev Bras Entomol. 2012;56(4):481-8. https://doi.org/10.1590/S0085-56262012000400013.
  51. Knudsen JT, Eriksson R, Gershenzon J, Stahl B. Diversity and distribution of floral scent. Bot Rev. 2006;72(1):1-120. https://doi.org/10.1663/0006-8101(2006)72[1:DADOFS]2.0.CO;2
  52. Knudsen JT, Tollsten L, Ervik F. Flower scent and pollination in selected neotropical palms. Plant Biol. 2001;3(6):642-53. https://doi.org/10.1055/s-2001-19366.
  53. Kobayashi K, Arai M, Tanaka A, Matsuyama S, Honda H, Ohsawa R. Variation in floral scent compounds recognized by honeybees in Brassicaceae crop species. Breed Sci. 2012;62(4):293-302. https://doi.org/10.1270/jsbbs.62.293.
  54. Krug C, Cordeiro GD, Schaffler I, Silva CI, Oliveira R, Schlindwein C, et al. Nocturnal bee pollinators are attracted to guarana flowers by their scents. Front Plant Sci. 2018;9:1072. https://doi.org/10.3389/fpls.2018.01072.
  55. Kullenberg B. New observations on the pollination of Ophrys L. (Orchidaceae). Zoon. 1973;(Suppl 1):9-13.
  56. Kunze J, Gumbert A. The combined effect of color and odor on flower choice behavior of bumble bees in flower mimicry systems. Behav Ecol. 2001;12(4):447-56. https://doi.org/10.1093/beheco/12.4.447.
  57. Laloi D, Pham-Delegue MH. Bumble bees show asymmetrical discrimination between two odors in a classical conditioning procedure. J Insect Behav. 2004;17(3):385-96. https://doi.org/10.1023/B:JOIR.0000031538.15346.e1.
  58. Lange BM, Ahkami A. Metabolic engineering of plant monoterpenes, sesquiterpenes and diterpenes--current status and future opportunities. Plant Biotechnol J. 2013;11(2):169-96. https://doi.org/10.1111/pbi.12022.
  59. Liao P, Hemmerlin A, Bach TJ, Chye ML. The potential of the mevalonate pathway for enhanced isoprenoid production. Biotechnol Adv. 2016;34(5):697-713. https://doi.org/10.1016/j.biotechadv.2016.03.005.
  60. Lunau K, Maier E. Innate colour preferences of flower visitors. J Comp Physiol A. 1995;177(1):1-19. https://doi.org/10.1007/BF00243394.
  61. Majetic CJ, Raguso RA, Ashman TL. The sweet smell of success: floral scent affects pollinator attraction and seed fitness in Hesperis matronalis. Funct Ecol. 2009;23(3):480-7. https://doi.org/10.1111/j.1365-2435.2008.01517.x.
  62. Martin ML, San Roman L, Dominguez A. In vitro activity of protoanemonin, an antifungal agent. Planta Med. 1990;56(1):66-9. https://doi.org/10.1055/s-2006-960886.
  63. Meagher RL Jr. Trapping noctuid moths with synthetic floral volatile lures. Entomol Exp Appl. 2002;103(3):219-26. https://doi.org/10.1046/j.1570-7458.2002.00977.x
  64. Mena Granero A, Egea Gonzalez FJ, Guerra Sanz JM, Martinez Vidal JL. Analysis of biogenic volatile organic compounds in zucchini flowers: identification of scent sources. J Chem Ecol. 2005;31(10):2309-22. https://doi.org/10.1007/s10886-005-7103-2.
  65. Michener CD. The bees of the world. 2nd ed. Baltimore: Johns Hopkins University Press; 2007.
  66. Michener CD. The bees of the world. Baltimore: Johns Hopkins University Press; 2000.
  67. Milet-Pinheiro P, Ayasse M, Dobson HE, Schlindwein C, Francke W, Dotterl S. The chemical basis of host-plant recognition in a specialized bee pollinator. J Chem Ecol. 2013;39(11-12):1347-60. https://doi.org/10.1007/s10886-013-0363-3.
  68. Minckley RL, Roulston T. Incidental mutualisms and pollen specialization among bees. In: Ollerton J, Waser NM, editors. Plant-pollinator interactions: from specialization to generalization. Chicago: University of Chicago Press; 2006. p. 69-98.
  69. Muhlemann JK, Klempien A, Dudareva N. Floral volatiles: from biosynthesis to function. Plant Cell Environ. 2014;37(8):1936-49. https://doi.org/10.1111/pce.12314.
  70. Muth F, Papaj DR, Leonard AS. Bees remember flowers for more than one reason: pollen mediates associative learning. Anim Behav. 2016;111:93-100. https://doi.org/10.1016/j.anbehav.2015.09.029.
  71. Newsholme C. Willows: the genus Salix. Portland: Timber Press; 1992.
  72. Paldi N, Zilber S, Shafir S. Associative olfactory learning of honeybees to differential rewards in multiple contexts--effect of odor component and mixture similarity. J Chem Ecol. 2003;29(11):2515-38. https://doi.org/10.1023/a:1026362018796.
  73. Parachnowitsch AL, Raguso RA, Kessler A. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytol. 2012;195(3):667-75. https://doi.org/10.1111/j.1469-8137.2012.04188.x.
  74. Paulus HF, Gack C. Pollinators as prepollinating isolation factors: evolution and speciation in Ophrys (Orcffldaceae). Isr J Bot. 1990;39(1-2):43-79.
  75. Pazouki L, Niinemets U. Multi-substrate terpene synthases: their occurrence and physiological significance. Front Plant Sci. 2016;7:1019. https://doi.org/10.3389/fpls.2016.01019.
  76. Peled-Zehavi H, Oliva M, Xie Q, Tzin V, Oren-Shamir M, Aharoni A, et al. Metabolic engineering of the phenylpropanoid and its primary, precursor pathway to enhance the flavor of fruits and the aroma of flowers. Bioengineering (Basel). 2015;2(4):204-12. https://doi.org/10.3390/bioengineering2040204.
  77. Pichersky E, Raguso RA. Why do plants produce so many terpenoid compounds? New Phytol. 2018;220(3):692-702. https://doi.org/10.1111/nph.14178.
  78. Pinzauti M. Kiwi pollination: several ways of increasing the activity of honeybees. Acta Hortic. 1990;282:149-50. https://doi.org/10.17660/ActaHortic.1990.282.18.
  79. Poinar GO Jr, Danforth BN. A fossil bee from Early Cretaceous Burmese amber. Science. 2006;314(5799):614. https://doi.org/10.1126/science.1134103.
  80. Potts SG, Imperatriz-Fonseca V, Ngo HT, Biesmeijer JC, Breeze TD, Dicks LV, et al. The assessment report of the Intergovernmental Science-Policy Platform On Biodiversity And Ecosystem Services (IPBES) on pollinators, pollination and food production. Bonn: Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services; 2016. p. 3-25.
  81. Proctor M, Yeo PF, Lack A. The natural history of pollination. London: Harper Collins Publishers; 1996. p. 479.
  82. Raguso RA, Levin RA, Foose SE, Holmberg MW, McDade LA. Fragrance chemistry, nocturnal rhythms and pollination "syndromes" in Nicotiana. Phytochemistry. 2003;63(3):265-84. https://doi.org/10.1016/s0031-9422(03)00113-4.
  83. Raguso RA, Willis MA. Synergy between visual and olfactory cues in nectar feeding by naive hawkmoths, Manduca sexta. Anim Behav. 2002;64(5):685-95. https://doi.org/10.1006/anbe.2002.4010.
  84. Raguso RA. Wake up and smell the roses: the ecology and evolution of floral scent. Annu Rev Ecol Evol Syst. 2008;39:549-69. https://doi.org/10.1146/annurev.ecolsys.38.091206.095601.
  85. Ramya M, Kwon OK, An HR, Park PM, Baek YS, Park PH. Floral scent: regulation and role of MYB transcription factors. Phytochem Lett. 2017;19:114-20. https://doi.org/10.1016/j.phytol.2016.12.015.
  86. Robertson G, Griffiths D, Woodford J, Birch A. Changes in the chemical composition of volatiles released by the flowers and fruits of the red raspberry (Rubus idaeus) cultivar glen prosen. Phytochemistry. 1995;38(5):1175-9. https://doi.org/10.1016/0031-9422(94)00782-O.
  87. Robertson HM, Wanner KW. The chemoreceptor superfamily in the honey bee, Apis mellifera: expansion of the odorant, but not gustatory, receptor family. Genome Res. 2006;16(11):1395-403. https://doi.org/10.1101/gr.5057506.
  88. Rodriguez-Saona C, Parra L, Quiroz A, Isaacs R. Variation in highbush blueberry floral volatile profiles as a function of pollination status, cultivar, time of day and flower part: implications for flower visitation by bees. Ann Bot. 2011;107(8):1377-90. https://doi.org/10.1093/aob/mcr077.
  89. Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants. Nat Prod Rep. 1999;16(5):565-74. https://doi.org/10.1039/a709175c.
  90. Schaffler I, Steiner KE, Haid M, van Berkel SS, Gerlach G, Johnson SD, et al. Diacetin, a reliable cue and private communication channel in a specialized pollination system. Sci Rep. 2015;5:12779. https://doi.org/10.1038/srep12779.
  91. Schiestl FP, Ayasse M. Post-pollination emission of a repellent compound in a sexually deceptive orchid: a new mechanism for maximising reproductive success? Oecologia. 2001;126(4):531-4. https://doi.org/10.1007/s004420000552.
  92. Schiestl FP, Johnson SD. Pollinator-mediated evolution of floral signals. Trends Ecol Evol. 2013;28(5):307-15. https://doi.org/10.1016/j.tree.2013.01.019.
  93. Tatsuka K, Suekane S, Sakai Y, Sumitani H. Volatile constituents of kiwi fruit flowers: simultaneous distillation and extraction versus headspace sampling. J Agric Food Chem. 1990;38(12):2176-80. https://doi.org/10.1021/jf00102a015.
  94. Theis N. Fragrance of Canada thistle (Cirsium arvense) attracts both floral herbivores and pollinators. J Chem Ecol. 2006;32(5):917-27. https://doi.org/10.1007/s10886-006-9051-x.
  95. Tollsten L, Knudsen JT. Floral scent in dioecious Salix (Salicaceae)- a cue determining the pollination system? Plant Syst Evol. 1992;182(3):229-37. https://doi.org/10.1007/BF00939189.
  96. Tsirakoglou V, Thrasyvoulou A, Hatjina F. Techniques to increase the attractiveness of kiwi flowers to honey bees. Acta Hortic. 1997;444:439-52. https://doi.org/10.17660/ActaHortic.1997.444.68.
  97. Twidle AM, Mas F, Harper AR, Horner RM, Welsh TJ, Suckling DM. Kiwifruit flower odor perception and recognition by honey bees, Apis mellifera. J Agric Food Chem. 2015;63(23):5597-602. https://doi.org/10.1021/acs.jafc.5b01165.
  98. Tzin V, Galili G. New insights into the shikimate and aromatic amino acids biosynthesis pathways in plants. Mol Plant. 2010;3(6):956-72. https://doi.org/10.1093/mp/ssq048.
  99. Wcislo WT, Tierney SM. Behavioural environments and niche construction: the evolution of dim-light foraging in bees. Biol Rev Camb Philos Soc. 2009;84(1):19-37. https://doi.org/10.1111/j.1469-185X.2008.00059.x.
  100. Whitney HM, Kolle M, Andrew P, Chittka L, Steiner U, Glover BJ. Floral iridescence, produced by diffractive optics, acts as a cue for animal pollinators. Science. 2009;323(5910):130-3. https://doi.org/10.1126/science.1166256.
  101. Williams IH, Pickett J, Martin A. The Nasonov pheromone of the honeybee Apis mellifera L. (Hymenoptera, Apidae). Part II. Bioassay of the components using foragers. J Chem Ecol. 1981;7(2):225-37. https://doi.org/10.1007/BF00995745.
  102. Williams N. Floral fragrances as cues in animal behavior. Handb Exp Pollinat Biol. 1983:50-72.
  103. Williams NH, Whitten WM. Orchid floral fragrances and male euglossine bees: methods and advances in the last sesquidecade. Biol Bull. 1983;164(3):355-95. https://doi.org/10.2307/1541248.
  104. Wright GA, Schiestl FP. The evolution of floral scent: the influence of olfactory learning by insect pollinators on the honest signalling of floral rewards. Funct Ecol. 2009;23(5):841-51. https://doi.org/10.1111/j.1365-2435.2009.01627.x.
  105. Wright GA, Skinner BD, Smith BH. Ability of honeybee, Apis mellifera, to detect and discriminate odors of varieties of canola (Brassica rapa and Brassica napus) and snapdragon flowers (Antirrhinum majus). J Chem Ecol. 2002;28(4):721-40. https://doi.org/10.1023/a:1015232608858.
  106. Wu S, Schalk M, Clark A, Miles RB, Coates R, Chappell J. Redirection of cytosolic or plastidic isoprenoid precursors elevates terpene production in plants. Nat Biotechnol. 2006;24(11):1441-7. https://doi.org/10.1038/nbt1251.
  107. Yoo H, Widhalm JR, Qian Y, Maeda H, Cooper BR, Jannasch AS, et al. An alternative pathway contributes to phenylalanine biosynthesis in plants via a cytosolic tyrosine: phenylpyruvate aminotransferase. Nat Commun. 2013;4:2833. https://doi.org/10.1038/ncomms3833.