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Abstract
Semi-supervised learning has gained significant attention in recent applications. In this article, we provide

a selective overview of popular semi-supervised methods and then propose a simple but effective algorithm for
semi-supervised classification using support vector machines (SVM), one of the most popular binary classifiers
in a machine learning community. The idea is simple as follows. First, we apply the dimension reduction to the
unlabeled observations and cluster them to assign labels on the reduced space. SVM is then employed to the
combined set of labeled and unlabeled observations to construct a classification rule. The use of SVM enables
us to extend it to the nonlinear counterpart via kernel trick. Our numerical experiments under various scenarios
demonstrate that the proposed method is promising in semi-supervised classification.

Keywords: dimension reduction, k-means clustering, semi-supervised classification, support vec-
tor machines

1. Introduction

In binary classification, we are given a set of data (yi, xi) ∈ {−1, 1} × Rp, i = 1, . . . , n where yi and
xi denote a class label and a p-dimensional predictor, respectively. The primal goal of binary classi-
fication is to learn a function f (classification/decision function) whose sign sign{ f (x)} predicts the
corresponding class label y.

However, we often encounter cases where only a few observations have known labels, and most
of them have unknown labels. That is, we are given two sets of data, labeled data L = {(xi, yi), i =

1, . . . , `} and unlabeled data U = {x`+1, . . . , xn}. Semi-supervised is proposed to handle such data
efficiently by minimizing the information loss from the large number of missing labels in U. Semi-
supervised learning exploits both labeled and unlabeled datasets, while supervised learning only ex-
ploits the labeled dataset with a limited size. Thus, semi-supervised learning is particularly useful
when the labeled data are very hard to collect while the unlabeled is much easier.

In this article, we provide a selective but systematic review of existing semi-supervised classifica-
tion methods, and then propose a simple but efficient semi-supervised classification algorithm based
on the support vector machine (SVM; Vapnik, 2015). To be more precise, we apply the k-means clus-
tering algorithm to assign labels toU. This idea is supported by the clustering assumption (Chapelle
et al., 2008) that is often required in semi-supervised learning community. We then apply the SVM
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to train the classifier from both L and U after properly labelled. The proposed algorithm can be
extended to nonlinear case by applying nonlinear dimension reduction before the clustering.

The rest of articles is organized as follows. In Section 2, we provide a selective overview of semi-
supervised learning methods. In Section 3, the proposed algorithm based on k-means clustering and
SVM is described in great detail, including its nonlinear extension. We conduct simulation to evaluate
the performance of the proposed method in Section 4, and real data application follows in Section 5.
Concluding remarks is given in Section 6.

2. Review

2.1. Self-training

The self-training algorithm (Yarowsky, 1995) first estimates f from L only and predicts the labels
of U. We then estimate f again from L and U with the estimated label in the previous Step. This
procedure can be iterated until the estimated labels of U becomes stable, and the final classifier is
then trained from the combined data, L andU with estimated labels. The idea is simple but requires
the assumption that the model’s high confidence predictions tend to be correct to guarantee that the
estimated labels forU are accurate enough. The self-training algorithm does not impose a particular
model, and hence can be applied to any classifiers such as SVM and boosting. The self-training
algorithm is known to be effective in natural language processing. However, it is sensitive to the
prediction accuracy of the initial classifier from L only. Finally, Algorithm 1 describes the self-
training algorithm.

Algorithm 1 Self-training Algorithm

1. Train a classifier from the labeled data set, L denoted by f̃ (1).

2. For k = 1, 2, . . . ,

2-1. Predict y j, j = ` + 1, . . . , n, the labels ofU from f̃ (k) , ỹ(k)
j = f̃ (k)(x j). Let

Ũ(k) =
{(

ỹ(k)
j , x j

)
, j = ` + 1, . . . , n

}
.

2-2. Train a classifier from combined samples, L ∪ Ũ(k), denoted by f̃ (k+1).

2-3. If the estimated labels become stable,

(n − `)−1
n∑

j=`+1

1
{
ỹ(k)

j , ỹ(k+1)
j

}
< δ

for a given value of δ ∈ (0, 1), then stop the iteration and go to the Step 3.

3. Return f̂ = f̃ (k) as the final classifier.
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2.2. Generative models

A generative model tries to uncover the data generating process, the distribution of (Y,X) which
directly yields a classification rule based on P(Y | x). There are several models to estimate the
joint distribution of (Y,X): Gaussian mixture model (GMM), a mixture of multinomial distributions
for categorical x, and hidden Markov model (HMM) popular for natural language processing.

We focus on the Gaussian mixture model (GMM) the most popular one in a statistical community.
Without loss of generality, we consider binary classification with y ∈ {−1, 1} but the extension to the
multi-class case is straightforward. The GMM with two components assumes the joint density of
(Y,X) denoted by f (y, x | θ) being

f (y, x | θ) = f (y | w) f
(
x | y,µy,Σy

)
, (2.1)

where θ = (w, µ+, µ−,Σ+,Σ−) denotes the model parameter vector. f (y | w) and f (x | y,µy,Σy) denote
the symmetric Bernoulli density with P(Y = 1) = 1 − P(Y = −1) = w ∈ (0, 1) and the multivariate
Gaussian density with mean vector µy ∈ Rp and covariance matrix Σy ∈ Rp×p where y ∈ {−1, 1},
respectively. Under the GMM (2.1), the class probability is

P(Y = 1 | x, θ) =
f (y = 1, x | θ)

f (y = 1, x | θ) + f (y = −1, x | θ)
. (2.2)

The GMM is even more prevalent in unsupervised settings, when there is no labeled data available.
The parameter estimation is not difficult thanks to the well-known Expectation-Maximization (EM)
algorithm (Dempster et al., 1977). Therefore, the GMM is naturally extended to semi-supervised
problems by constructing the likelihood function (in log scale) as follows,

` (θ | L,U) =
∑̀
i=1

log f (yi | θ) f (xi|yi, θ)︸                          ︷︷                          ︸
L: Labeled data

+

n∑
j=`+1

log

 ∑
y′∈{−1,1}

f (y′ | θ) f (x j | y′, θ)

︸                                            ︷︷                                            ︸
U: Unlabeled data

. (2.3)

Similar to the unsupervised case, the EM algorithm can be employed to find MLE. Given the MLE
of θ̂ that maximizes (2.3), which directly yields a classification rule based on the plug-in estimator of
(2.2).

One advantage of the generative model is that it uncovers the data generating process of (X,Y)
which provides a transparent insight into the data. It tends to achieve optimal performance if the model
assumption is satisfied. However, the final results heavily depend on the adequacy of the generative
model.

2.3. Semi-supervised support vector machine (SVM)

Semi-supervised support vector machine (S3VM; Chapelle et al., 2008) is an extended version of
standard SVM that exploits both the labeled and unlabeled datasets to train classification boundary
that maximizes geometric margin of the data. The linear S 3V M that seeks a classification function
f (x) = b + wT x minimizes,

S (b,w, yu) =
1
2
‖w‖2 + C1

∑̀
i=1

H1 (yi f (xi)) + C2

n∑
j=`+1

H1

(
y j f (x j)

)
, (2.4)
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Figure 1: Illustration of cluster assumption (Chapelle et al., 2008): Two clusters clearly separated by S3VM
solution, a solid line.

where yu = {y j, j = ` + 1, . . . , n} is the missing labels of U, H1(u) = max{0, 1 − u} denotes the
hinge loss function, and nonnegative constants C1 and C2 are tuning parameters that controls balances
between the data fitting and model complexity. The first two terms corresponds to the labeled data L
and (2.4) reduces to the SVM for L if C2 = 0. The third term incorporates unlabeled observations,
U. That is, S3VM tries to find a classification boundary that maximizes the margin of U among
all possible configurations of unobserved labels yu. Non-linear extension on the reproducing kernel
Hibert space (RKHS; Wahba, 1990) is straightforward via kernel trick just like the standard SVM.

Despite its conceptual simplicity, (2.4) is a combinatorial problem, infeasible unless n is very
small. Various types of algorithms have been proposed to solve (2.4). Chapelle et al. (2008) provides
a systematic overview of computational strategies of S3VM and classifies the optimization strategies
into two types: combinatorial optimization and continuous optimization. The combinatorial optimiza-
tion seeks a minimizer of T (yu) over all possible configuration of the binary vector yu where

T (yu) = min
b,w

S (b,w, yu). (2.5)

On the other hand, the continuous optimization modifies (2.4) in order to eliminate yu in the optimiza-
tion, and minimizes

1
2
‖w‖2 + C1

∑̀
i=1

H1 (yi f (xi)) + C2

n∑
j=`+1

H1

(
| f (x j|

)
, (2.6)

with respect to (b,w). This is known as the transductive SVM (TSVM; Collobert et al., 2006), another
popular tool for semi-supervised classification. Collobert et al. (2006) further modified TSVM objec-
tive function by replacing the hinge loss function in the last term of (2.6) with the ramp loss function
Rs(u) = min{1 − s,max{0, 1 − u}} (Shen et al., 2003; Wu and Liu, 2007) to facilitate the optimization
via concave-convex procedure (CCCP; Le Thi Hoai and Tao, 1997).

3. Proposed method

Both the self-training algorithm and S3VM introduced in Section 2 requires the cluster assumption,
which states that two points x and x′ belongs to the same cluster (with high probability) if there is a
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“path” between the two points that moves through regions with a high density of P(X = x). Figure 1
(Chapelle et al., 2008) illustrates toy examples with two labeled observations (triangle and cross) and
100 unlabeled observations. Under the cluster assumption, the S3VM solution (a solid line) accurately
identifies the true classification boundary even for two observations with labels.

The cluster assumption implies that observations in U should be clustered, which motivates one
to develop a simple clusteringU to predict their labels. There are several popular clustering methods
in statistical learning. Among many others, the density-based spatial clustering of applications with
noise (DBSCAN; Ester et al., 1996) that defines clusters based on the density of observations seems
conceptually well-matched to the CA assumption. However, DBSCAN has two tuning parameters
whose choice is crucial for the results and usually yields the noise points that fail to belong to any
clusters. For this reason, in this article, we propose to use the k-means clustering, one of the most
popular clustering methods in statistics due to its simplicity. Of course, the k-means clustering also
has a couple of drawbacks. First, the k-means clustering requires the number of clusters, k as an input
of the algorithm. However, in our problem where cluster membership is used for labeling U, the
number of clusters is not essential. We can use sufficiently large k since it allows the same labels for
different clusters. The second problem is that the k-means clustering cannot identify clusters when
their boundaries are highly nonlinear, for example, as shown in Figure 1. This is the motivation of DB-
SCAN. To tackle this, we propose to apply the nonlinear dimension reduction such as kernel principal
component analysis (KPCA) to observations in U before applying the clustering. The kernel PCA
efficiently identifies nonlinear features ofU expressed on RKHS, then nonlinear cluster boundary can
be uncovered by the k-means algorithm on the nonlinear feature space, RKHS.

After clustering, for each cluster, we count the frequency of the observed labels and then assign
the class label corresponding to the maximum frequency. That is, for the jth cluster, we assign the
label k∗j to the jth cluster

k∗j = arg max
k

n(k)
j , (3.1)

where n(k)
j denotes the number of observations from the kth class in the jth cluster. When k∗j is not

unique, we can randomly choose one of them.
Finally, we can use both L and U for learning classification rule since U is properly labeled.

The proposed algorithm is summarized in the following. Due to the cluster assumption in (Chapelle

Algorithm 2 Algorithm 1 - Linear learning
Input: a training dataset,D = L ∪U; the number of classes, K;
Step 1. (Clustering) Apply k-means clustering to the predictors inD
Step 2. (Labeling) For each cluster, assign a proper label using (3.1).
Step 3. (Learning) Apply the SVM algorithm to both L and the labelledU in order to learn f .
Output: Trained model f

et al., 2008), the observations in the same cluster should have the same label. It is simple to check
whether the data satisfies the cluster assumption in linear representation. However, the standard for
determining the same cluster is ambiguous when the decision boundary is highly nonlinear. To tackle
this issue, we propose to apply kernel principal component analysis (KPCA) to the predictors in D.
The modified algorithm for nonlinear learning is given below.

There are several minor issues to complete the algorithm, which shall be discussed in the follow-
ing. First, we need to choose a proper kernel function for both KPCA and SVM. It is natural to use the
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Algorithm 3 Algorithm 2 - Nonlinear learning
Input: a training dataset,D = L ∪U; the number of classes, K;
Step 0. (Feature Extraction) Apply kernel PCA to predictors in D for extracting nonlinear fea-
tures.
Step 1. (Clustering) Apply k-means clustering to the extracted features obtained in Step 0.
Step 2. (Labeling) For each cluster, assign a proper label using (3.1).
Step 3. (Learning) Apply the SVM algorithm to both L and the labelledU in order to learn f .
Output: Trained model f

same kernel function for them, and we employ the radial basis kernel K(x, x′) = exp{−‖x− x′‖/(2σ2)}
with σ set to be median pairwise distance between the predictors inL. Secondly, it is required in PCA
to decide the number of features to be used for the cluster. One common choice is to use cumulative
eigenvalues of the kernel working matrix. However, we alternatively propose to use the Hotelling’s
T 2 test (Lu et al., 2005) when for the binary classification and the F statistic (Shaw and Mitchell-
Olds, 1993) for the multiclass classification, instead of eigenvalues. The idea behind this is that the
larger statistic implies more classification information contained in the feature. Our limited simulation
demonstrates that the proposed idea based on the test statistic outperforms the eigenvalue-based one.
In the upcoming examples, we use 80% for the cutoff.

4. Simulation

In this section, we conduct several simulation studies to evaluate the prediction performance of the
proposed algorithm. The existing methods reviewed in Section 2 are considered as competing meth-
ods. That is, we include the self-training algorithm, the generative models based on the EM algorithm.
We use sslGmmEM() function in R-package SSL to fit the generative model. We also tried the TSVM
using TSVM() function in R-package RSSL. However, the function did not work in our simulation
except for the linear binary classification, and we could not include it in the comparison. Instead, we
include the supervised SVM for L only as a baseline competitor.

We generate 500 training sample size for D with(α × 100)% unlabelled observations where α =

{0.80, 0.90, 0.95} is considered. The prediction accuracy is evaluated for independent test sample of
size n ∈ {100, 500, 1000}.

4.1. Linear classification

For linear classification, we consider the following scenarios:

A1 (Binary classification) Let x | (y = 1) ∼ MN(µ,Σ) and x | (y = −1) ∼ MN(−µ,Σ) with µ =

(0.7, . . . , 0.720)T and Σ = 4I20.

A2 (Multi-class classification) Let x | (y = 1) ∼ MN(1T
20, 4I20), x | (y = 2) ∼ MN(2T

20, 4I20) and
x | (y = 3) ∼ MN(3T

20, 4I20), respectively.

Table 1 contains the test prediction accuracy for different methods, averaged over one hundred inde-
pendent repetitions. The numbers in parentheses are corresponding standard deviations. Although
all methods considered show comparable performance, one can observe that the proposed method
outperforms as α increases, , the number of labeled observations get decreases.
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Table 1: Linear classification – averaged prediction accuracy over 100 independent repetitions are reported
under model A1 and A2. The numbers in parentheses are the corresponding standard deviations

Model n α Self-training Generative model SVM Proposed method

A1

0.80 0.928 (0.02) 0.927 (0.05) 0.926 (0.03) 0.926 (0.03)
100 0.90 0.912 (0.05) 0.897 (0.11) 0.900 (0.05) 0.922 (0.03)

0.95 0.888 (0.05) 0.841 (0.17) 0.882 (0.05) 0.903 (0.05)
0.80 0.931 (0.01) 0.928 (0.04) 0.925 (0.01) 0.927 (0.02)

500 0.90 0.913 (0.05) 0.896 (0.10) 0.899 (0.04) 0.914 (0.03)
0.95 0.878 (0.04) 0.834 (0.17) 0.872 (0.03) 0.900 (0.05)
0.80 0.932 (0.01) 0.928 (0.04) 0.927 (0.01) 0.926 (0.01)

1000 0.90 0.915 (0.05) 0.898 (0.10) 0.901 (0.04) 0.917 (0.02)
0.95 0.877 (0.03) 0.835 (0.17) 0.870 (0.03) 0.906 (0.04)

A2

0.80 0.898 (0.04) 0.868 (0.08) 0.881 (0.04) 0.885 (0.04)
100 0.90 0.818 (0.04) 0.786 (0.13) 0.821 (0.04) 0.865 (0.04)

0.95 0.784 (0.06) 0.656 (0.11) 0.789 (0.06) 0.814 (0.08)
0.80 0.897 (0.03) 0.866 (0.07) 0.888 (0.03) 0.897 (0.02)

500 0.90 0.857 (0.02) 0.774 (0.12) 0.851 (0.03) 0.884 (0.04)
0.95 0.811 (0.05) 0.676 (0.11) 0.804 (0.04) 0.836 (0.07)
0.80 0.898 (0.03) 0.886 (0.09) 0.887 (0.03) 0.897 (0.02)

1000 0.90 0.859 (0.02) 0.777 (0.12) 0.852 (0.03) 0.880 (0.04)
0.95 0.809 (0.04) 0.677 (0.11) 0.803 (0.04) 0.850 (0.07)

Table 2: Nonlinear classification - averaged prediction accuracy over 100 independent repetitions are reported
under model B1 and B2. The numbers in parentheses are the corresponding standard deviations

Model n α Self-training Generative model SVM Proposed method

B1

0.80 0.516 (0.06) 0.506 (0.05) 0.515 (0.05) 0.584 (0.05)
100 0.90 0.508 (0.06) 0.499 (0.07) 0.508 (0.06) 0.565 (0.06)

0.95 0.513 (0.06) 0.508 (0.06) 0.514 (0.06) 0.557 (0.06)
0.80 0.517 (0.04) 0.502 (0.04) 0.516 (0.04) 0.577 (0.04)

500 0.90 0.506 (0.04) 0.499 (0.04) 0.507 (0.04) 0.557 (0.04)
0.95 0.517 (0.04) 0.504 (0.04) 0.518 (0.04) 0.550 (0.05)
0.80 0.514 (0.03) 0.502 (0.03) 0.514 (0.03) 0.577 (0.03)

1000 0.90 0.512 (0.03) 0.502 (0.04) 0.512 (0.03) 0.564 (0.04)
0.95 0.514 (0.04) 0.501 (0.04) 0.514 (0.04) 0.545 (0.04)

B2

0.80 0.517 (0.05) 0.350 (0.08) 0.523 (0.05) 0.550 (0.13)
100 0.90 0.487 (0.06) 0.351 (0.08) 0.487 (0.06) 0.492 (0.13)

0.95 0.443 (0.05) 0.328 (0.06) 0.446 (0.06) 0.477 (0.07)
0.80 0.521 (0.03) 0.352 (0.07) 0.523 (0.03) 0.553 (0.10)

500 0.90 0.488 (0.04) 0.354 (0.07) 0.489 (0.04) 0.504 (0.10)
0.95 0.455 (0.05) 0.334 (0.04) 0.456 (0.05) 0.496 (0.08)
0.80 0.523 (0.03) 0.353 (0.07) 0.526 (0.02) 0.564 (0.08)

1000 0.90 0.492 (0.03) 0.350 (0.07) 0.493 (0.03) 0.526 (0.09)
0.95 0.453 (0.05) 0.334 (0.03) 0.456 (0.04) 0.479 (0.08)

4.2. Nonlinear classification

The following models are considered to evaluate the proposed nonlinear algorithm.

B 1 (Binary classification) Let y = sign { f (x) + k + ε}, where f (x) = log(2x2
1 + 2x2

2) and x1, x2 ∼

N(0, 1) and ε ∼ N(0, 32).

B 2 (Multi-class classification) Let y is determined by the 33 percentile and 66 percentile of f (x),
where f (x) = 2 cos(x1) + log(1 + x2

2) and x1, x2 ∼ N(0, 1).

Table 2 shows the results for the nonlinear models. The generative model fails since the model
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Table 3: Results for the iris data – averaged prediction accuracy over 100 independent random partitioning for
the iris data. The numbers in parentheses are the corresponding standard deviations

ntrain : ntest prop Self-training Generative model SVM Proposed method

100:50
0.7 0.944 (0.04) 0.668 (0.31) 0.945 (0.04) 0.937 (0.05)
0.8 0.927 (0.05) 0.567 (0.36) 0.930 (0.05) 0.939 (0.05)
0.9 0.868 (0.17) 0.523 (0.32) 0.868 (0.11) 0.872 (0.12)

75:75
0.7 0.942 (0.04) 0.594 (0.25) 0.940 (0.03) 0.925 (0.05)
0.8 0.919 (0.05) 0.530 (0.35) 0.920 (0.04) 0.926 (0.05)
0.9 0.854 (0.15) 0.515 (0.33) 0.849 (0.10) 0.875 (0.10)

50:100
0.7 0.919 (0.06) 0.564 (0.21) 0.924 (0.05) 0.922 (0.05)
0.8 0.886 (0.12) 0.490 (0.20) 0.871 (0.10) 0.887 (0.11)
0.9 0.797 (0.18) 0.500 (0.24) 0.809 (0.10) 0.840 (0.07)

assumption is violated, and other methods perform reasonably well. Again, the proposed method
outperforms all others, just like the linear cases.

4.3. Computing time

We also compare the computing time of the proposed algorithm. Figure 2 depicts the averaged com-
puting time in seconds over the 10 repetitions for model (A1) and (B1), for different sample sizes
n ∈ {100, 200, . . . , 1000}. It is observed that the elapsed time for all methods linearly increases as
the sample size n increases. As expected, the supervised SVM is the fastest since it only uses L for
estimating f . In linear cases, one can observe that the proposed method is computationally efficient
than the generative model, and is comparable to the self-training algorithm. In nonlinear cases, we
observed our algorithm becomes slow as n increases. This is because the K-means clustering algo-
rithm takes a much longer time in kernel space. However, the K-means clustering algorithm is not
essential for our method, and one can replace it with better and faster alternative clustering algorithms
to improve computational efficiency.

5. Real data analysis

5.1. Iris data

As a final showcase, we apply the proposed method to iris data available in R. It consists of 150
observations with four covariates as follows: sepal length, sepal width, petal length, and petal width.
The response variable is the three types of irises with setosa, versicolor, and virginica. We compare
the proposed method with three learning algorithms used in Section 4 under different proportions of
U, α ∈ {0.7, 0.8, 0.9}. We randomly split the data into the training and test datasets with different
sample sizes, ntrain : ntest = {100 : 50, 75 : 75, 50 : 100}. Table 3 presents the averaged prediction
accuracy of the methods over a hundred independent repetitions of the random partitioning. Again,
one can see that the proposed method show better performance than others when the missing label
proportion increases.

5.2. Wisconsin diagnostic breast cancer data

We also apply the proposed method to Wisconsin diagnostic breast cancer (WDBC) available in UCI
machine learning repository, one of the most popular data sets for binary classification. This dataset is
composed of a total of 569 observations with benign and malign cases being 357 and 212 observations,
and 30 real-valued covariates. To generate unlabeled data, we randomly choose 90% of samples and
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Figure 2: Test ROC curves for WDBC data.

remove their labels. We then randomly split the data set into the training and test set with equal sizes.
Finally, we apply the proposed algorithm to the WDBC data, and Figure 2 depicts the test ROC

curve of the proposed method. We also provide two more ROC curves of supervised SVMs, one
from the original data without missing labels (denoted by oracle) and another from labeled data only
(denoted by supervised SVM). We remark that the oracle represents an ideal but unrealistic result that
any semi-supervised methods cannot beat. However, one can see that the proposed method shows
much-improved performance in terms of test ROC curve than the supervised SVM using observed
label only.

6. Conclusion

In this paper, we proposed a simple algorithm for semi-supervised classification based on the SVM
and the k-means clustering, both of which are very popular in a statistical community. Employing
the kernel trick, the proposed method can readily be extended to the nonlinear classification problem.
The proposed algorithm is conceptually straightforward and easy to implement and thus practically
attractive as demonstrated by the simulation and real data analysis.
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