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Abstract
As AI has a wide range of influence on human social life, issues of transparency and ethics of AI are emerg-

ing. In particular, it is widely known that due to the existence of historical bias in data against ethics or regulatory
frameworks for fairness, trained AI models based on such biased data could also impose bias or unfairness against
a certain sensitive group (e.g., non-white, women). Demographic disparities due to AI, which refer to socially un-
acceptable bias that an AI model favors certain groups (e.g., white, men) over other groups (e.g., black, women),
have been observed frequently in many applications of AI and many studies have been done recently to develop
AI algorithms which remove or alleviate such demographic disparities in trained AI models.

In this paper, we consider a problem of using the information in the sensitive variable for fair prediction when
using the sensitive variable as a part of input variables is prohibitive by laws or regulations to avoid unfairness.
As a way of reflecting the information in the sensitive variable to prediction, we consider a two-stage procedure.
First, the sensitive variable is fully included in the learning phase to have a prediction model depending on the
sensitive variable, and then an imputed sensitive variable is used in the prediction phase. The aim of this paper is
to evaluate this procedure by analyzing several benchmark datasets. We illustrate that using an imputed sensitive
variable is helpful to improve prediction accuracies without hampering the degree of fairness much.
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1. Introduction

Recently, artificial intelligence (AI) is being used as decision-making tools in various domains such
as credit scoring, criminal risk assessment, education of college admissions (Angwin et al., 2016).
As AI has a wide range of influences on human social life, issues of transparency and ethics of AI
are emerging. However, it is widely known that due to the existence of historical bias in data against
ethics or regulatory frameworks for fairness, trained AI models based on such biased data could also
impose bias or unfairness against a certain sensitive group (e.g., non-white, women) (Kleinberg et
al., 2018; Mehrabi et al., 2021). Therefore, designing an AI algorithm which is accurate and fair
simultaneously has become a crucial research topic.

Demographic disparities due to AI, which refer to socially unacceptable bias that an AI model
favors certain groups (e.g., white, men) over other groups (e.g., black, women), have been observed
frequently in many applications of AI such as COMPAS recidivism risk assessment (Angwin et al.,
2016), Amazon’s prime free same-day delivery (Ingold and Soper, 2016), credit score evaluation (Dua
and Graff, 2019) to name just a few. Many studies have been done recently to develop AI algorithms
which remove or alleviate such demographic disparities in trained AI models so that they will treat
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sensitive groups as equally as possible. In general, these methods try to search AI models which are
not only accurate but also similar between sensitive groups in a certain sense. For an example of
similarity, it is required that accuracies of an AI model for each sensitive group are similar (Zafar et
al., 2019).

In this paper, we consider a problem of using the sensitive variable for fair prediction. In most
real applications, the sensitive variable itself has important information for prediction and using the
sensitive variable as a part of input variables is usually helpful to improve prediction accuracies.
Moreover, some fairness AI algorithms inevitably produce prediction models which depend on the
sensitive variable as well as input variables. An example is the algorithm of Jiang et al. (2020) for
the strong demographic parity, which transfers the score function of each sensitive group such that the
distributions of the scores of each sensitive group are all equal. For this algorithm, the transformation
of the score function should be differ for each sensitive group and hence the sensitive variable should
be known in the prediction phase. In many cases, however, using the sensitive variable as a part of
input variables is prohibitive by laws or regulations to avoid unfairness. In such cases, fairness AI
algorithms yielding prediction models depending on the sensitive variable cannot be used.

A simple solution to reflect the information of the sensitive variable into prediction when using
the sensitive variable explicitly in prediction is prohibitive to use an imputed sensitive variable in the
prediction phase. That is, the sensitive variable is fully included in the learning phase to have a pre-
diction model depending on the sensitive variable and then an imputed sensitive variable is used in the
prediction phase. The aim of this paper is to evaluate this procedure by analyzing several benchmark
datasets. We illustrate that using an imputed sensitive variable is helpful to improve prediction accu-
racies without hampering the degree of fairness much. That is, prediction models with an imputed
sensitive variable are superior compared to prediction models not using the sensitive variable at all.

The paper is organized as follows. Various fairness algorithms are reviewed in Section 2. The
proposed procedure to include the information of the sensitive variables by using an imputed sensitive
variable into the prediction phase is explained in Section 3. Results of numerical studies are presented
in Section 4 and concluding remarks follow in Section 5.

2. Review of fair AI algorithms

We let D = {(xi, zi, yi)}ni=1 be a set of training data of size n consisting of triplets of input vector
xi, sensitive variable zi and class label yi, which are assumed to be independent copies of a random
vector (X,Z,Y) defined on X × Z × Y, where X ⊂ Rp. We consider a binary classification problem,
which means Y = {−1, 1}, and for notational simplicity, we let Z = {0, 1}, where Z = 0 refers
to the unprivileged group and Z = 1 refers to the privileged group. Whenever the probability is
mentioned, we mean it by either the probability of (X,Z,Y) or its empirical counterpart unless there
is any confusion.

In this paper, we focus on between-group fairness (BGF) which requires that certain statistics of
predictive values in each sensitive group should be similar. Even if we do not consider other concepts
of fairness such as individual fairness (Dwork et al., 2012) and counter-factural fairness (Kusner et
al., 2017) , our proposed method can be applied to such fairness concepts after minor modifications.

We consider AI algorithms which yield a real-valued function f : X → R so called a score func-
tion which assigns positive labeled instances higher scores than negative labeled instances. An exam-
ple of the score function is the conditional class probability Pr(Y = 1|x = x). In most human-related
decision makings, real-valued score functions are popularly used (e.g. scores for credit scoring).

Let F be a given set of score functions, in which we search an optimal score function in a certain
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Table 1: Some group performance functions

Fairness criteria E E′

Disparate impact (Barocas and Selbst, 2016) 1{C f (X) = 1} ∅

Equal opportunity (Hardt et al., 2016) 1{C f (X) = 1} {Y = 1}
Disparate mistreatment w.r.t. Error rate (Zafar et al., 2019) 1{C f (X) , Y} ∅

Mean score parity (Coston et al., 2019) f (X) ∅

sense (e.g. minimizing the cross-entropy for classification problems). Examples of F are linear
functions, reproducing kernel Hilbert space and deep neural networks to name a few. For a given
f ∈ F , the corresponding classifier C f is defined as C f (x) = 1( f (x) > 0).

2.1. Definition of between-group fairness

For a given score function f and a sensitive group Z = z, we consider the group performance function
of f given as

qz( f ) := E(E|E′,Z = z), (2.1)

for events E and E′ that might depend on f (X) and Y.
The group performance function qz in (2.1), which is considered by Celis et al. (2019), includes

various performance functions used in fairness AI. We summarize representative group performance
functions having the form of (2.1) in Table 1.

For given group performance functions qz(·), z ∈ {0, 1}, we say that f satisfies the BGF constraint
with respect to qz if q0( f ) = q1( f ). A relaxed version of the BGF constraint so called the ε-BGF
constraint, is frequently considered, which requires |q0( f ) − q1( f )| < ε for a given ε > 0. Typically,
AI algorithms search an optimal function f among those satisfying the ε-BGF constraint with respect
to given group performance functions qz(·), z ∈ {0, 1}.

2.2. Learning algorithms for fair artificial intelligence (AI)

Several learning algorithms have been proposed to find an accurate model f satisfying a given BGF
constraint, which are categorized into the following three groups. In this subsection, we review some
methods for each group.

Pre-processing methods: Pre-processing methods remove bias in training data or find a fair
representation with respect to a sensitive variable before the learning phase and learn AI models
based on de-biased data or fair representation (Calmon et al., 2017; Creager et al., 2019; Dixon et
al., 2018; Feldman et al., 2015; Kamiran and Calders, 2012; Quadrianto et al., 2019; Webster et al.,
2018; Xu et al., 2018; Zemel et al., 2013). Kamiran and Calders (2012) suggested pre-processing
methods to eliminate bias in training data by use of label changing, reweighing and sampling. Based
on the idea that transformed data should not be able to predict the sensitive variable, Feldman et al.
(2015) proposed a transformation of input variables for eliminating the disparate impact. To find a fair
representation, Calmon et al. (2017) and Zemel et al.(2013) proposed a data transformation mapping
for preserving accuracy and alleviating discrimination simultaneously. Pre-processing methods for
fair learning on text data were studied by Dixon et al. (2018) and Webster et al. (2018).

In-processing methods: In-processing methods generally train an AI model by minimizing a
given cost function (e.g. the cross-entropy, the sum of squared residuals, the empirical AUC etc.)
subject to a ε-BGF constraint. Most group performance functions qz(·) are not differentiable, and
thus various surrogated group performance functions and corresponding ε-BGF constraints have been



254 Yongdai Kim, Hwichang Jeong

proposed (Bechavod and Ligett, 2017; Celis et al., 2019; Cho et al., 2020; Donini et al., 2018; Goh
et al., 2016; Kamishima et al., 2012; Menon and Williamson, 2018; Narasimhan, 2018; Vogel et al.,
2020; Zafar et al., 2017, 2019). Kamishima et al. (2012) used a fairness regularizer which is an
approximation of the mutual information between the sensitive variable and the target variable. Zafar
et al. (2017, 2019) proposed covariance-type fairness constraints as tractable proxies targeting the
disparate impact and the equality of the false positive or negative rate, and Donini et al. (2018) used
a linear surrogated group performance function for the equalized odds. On the other hand, Menon
and Williamson (2018) and Celis et al. (2019) derived an optimal classifier for a constrained fair
classification as a form of an instance-dependent threshold. Also, for fair score functions, Vogel et al.
(2020) proposed fairness constraints based on ROC curves of each sensitive group.

Post-processing methods: Post-processing methods first learn an AI model without any BGF
constraint and then transform the decision boundary or score function of the trained AI model for
each sensitive group to satisfy given BGF criteria (Chzhen et al., 2019; Corbett-Davies et al., 2017;
Fish et al., 2016; Hardt et al., 2016; Jiang et al., 2020; Kamiran, et al., 2012; Pleiss et al., 2017; Wei et
al., 2021). Chzhen et al. (2019) and Hardt et al. (2016) suggested finding sensitive group dependent
thresholds to get a fair classifier with respect to equal opportunity. Jiang et al. (2020) and Wei et al.
(2021) developed an algorithm to transform the original score function to achieve a BGF constraint.

3. Fair prediction models with an imputed sensitive variable

We consider two situations according to whether the sensitive variable can be used in the prediction.
The first situation (Situation 1) is that the sensitive variable z is allowed to be used in the prediction
phase and thus we assume that z is one of the entries of the input vector. That is, there exists j ∈ [p]
such that x j = z. In contrast, the second situation (Situation 0) is that the sensitive variable cannot
be used in the prediction phase and thus the sensitive variable does not belong to the entries of the
input vector. As we mentioned in Introduction, there are many cases where the sensitive variable is
not allowed to be a part of the input vector by regulations or laws to ensure fairness although using z
in prediction would help improving prediction accuracy.

In this paper, we propose a method to use the information in the sensitive variable under Situation
0. The idea of the proposed method is simple and intuitive. At the learning phase, a prediction
model is learned with the input vector including the sensitive variable. Then, at the prediction phase,
we impute the sensitive variable based on the other input variables and make a prediction with the
imputed sensitive variable.

To be more specific, let x be the input vector not including z and let xz = (x>, z)> is the input vector
including z. In the learning phase, we learn a prediction model f : X ×Z → R with the training data
(xz,1, y1), . . . , (xz,n, yn). In addition, we learn a prediction model g : X → Z which predicts z based
on x. Then, in the prediction phase, for a given input vector x, we make a prediction by f (xẑ), where
ẑ = g(x). The proposed procedure is summarized in Algorithm 1.

There are at least two advantages of the proposed method compared to the standard method for
Situation 0 that learns a prediction model f 0 : X → R in the learning phase. First of all, using
the information of z in the prediction phase would be usually helpful for improving prediction accu-
racy. This advantage would keep being materialized even when an imputed z is used, which will be
confirmed by numerical studies on Section 4.

The second advantage, which is the main motivation of our proposed method, lies in that there are
several useful fair AI algorithms which yield prediction models which are functions on X × Z. An
example is the Wasserstein fair algorithm (Jiang et al., 2020) whose details are given in Section 4.1. It
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would not be easy to modify this algorithm for not using z in the prediction phase. In contrast, we can
use such algorithms without much modification by use of an imputed sensitive variable. By analyzing
several real datasets, we show that using an imputed sensitive variable instead of the sensitive variable
itself does not degrade the performance of prediction models much in view of prediction accuracy as
well as fairness.

Algorithm 1 Learning fair prediction models with an imputed sensitive variable

[1] Learning phase: Learn a prediction model f (xz) based on the training dataD
[2] Imputation phase: Learn a prediction model g : X → {0, 1} which predicts the sensitive variable
z by x.
[3] Prediction phase: For a given new input x, we predict y based on f (xẑ), where ẑ = g(x).

4. Numerical studies

In this section, we investigate the performance of the proposed procedure and compare it with the
predictions models without using an imputed sensitive variable (either not using the sensitive variable
under S0 or using the sensitive variable fully in the prediction phase under S1).

4.1. Considered fair AI algorithms

For fairness AI algorithms, we consider the three algorithms : (1) fair classifier with the disparity
impact (DI) constraint (Zafar et al., 2017), (2) fair classifier with the prejudice index (PI) constraint
(Kamishima et al., 2012) and (3) Wasserstein fair classifier of (Jiang et al., 2020). The first two
algorithms are in-processing methods and the third one is a post-processing method.

Fair classifier with the DI constraint: The DI constraint requires that a prediction model f
satisfies

|En(1{ f (X) > 0}|Z = 0) − En(1{ f (X) > 0}|Z = 1)| ≤ ε, (4.1)

where En is the expectation with respect to the empirical distribution. By use of the Lagrangian
multiplier, we could learn a prediction model by minimizing the penalized empirical risk given as

Cn( f ) + λ|En(1{ f (X) > 0}|Z = 0) − En(1{ f (X) > 0}|Z = 1)|

over F , where Cn(·) is a given empirical risk. In this paper, we consider the cross-entropy for the
empirical risk. The DI constraint (4.1) is hard to be optimized since the indicator function 1(·) is
neither continuous nor convex. A typical remedy is to replace the indicator function by a convex
surrogate function. One of the popularly used convex surrogate functions is the hinge function defined
as φhinge(w) = (1 − w)+ (Donini et al., 2018). Using the hinge surrogate loss, we learn the prediction
model by minimizing the surrogate penalized empirical risk

Cn( f ) + λ
∣∣∣∣En(φhinge( f (X))|Z = 0) − En(φhinge( f (X))|Z = 1)

∣∣∣∣,
over F .

Fair classifier with the PI constraint: PI measures statistical dependence between the class label
and sensitive variable. We think that a given classifier is more fair if its PI is smaller. For data
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(xi, zi)n
i=1 = D, we define PI as the prejudice remover regularizer given as

PI( f ) =
∑

(xi,zi)∈D

∑
y∈{0,1}

M (y|xi, zi) ln
P̂r (y|zi)

P̂r (y)
,

where

M(y|xi, zi) = yσ ( f (xi)) + (1 − y) (1 − σ ( f (xi))) ,

P̂r(y|z) =

∑
(xi,zi)∈D s.t. zi=zM (y|xi, z)
|{(xi, zi) ∈ D s.t. zi = z}|

,

P̂r(y) =

∑
(xi,zi)∈DM (y|xi, z)

|D|
.

σ is sigmoid function. We learn a fair classifier by minimizing Cn( f ) + λnPI( f ) over F .
Wasserstein fair classifier: This method is a post-processing method. Let S z(x) be the estimated

conditional class probability Pr(Y = 1|X = x,Z = z). Let Pn,z be the empirical distribution of {S z(xi) :
zi = z}. Then, the barycenter distribution P̄ is defined as

P̄ = arg min
P∈P(Ω)

∑
z∈{0,1}

nz

n
W1

(
Pn,z, P

)
,

where W1 is the L1 Wasserstein distance and P(Ω) is set of distributions on Ω = [0, 1]. Once the
barycenter P̄ is obtained, the fair classifier is constructed by use of the quantile matching between Pn,z

and P̄. For detailed procedures, we refer (Jiang et al., 2020).

4.2. Analyzed data sets

To evaluate the proposed procedure, we analyze three benchmark real world datasets : Adult income
dataset, Bank marketing dataset and Law school dataset.

• Adult dataset is composed of 45,222 individuals’ features (e.g. age, education, race) with a binary
label which indicates whether individual’s income is larger (positive class) than 50K USD. We take
the variable ‘sex’ as a sensitive variable.

• Bank dataset is composed of 41,188 clients’ features (e.g. job, education) with a binary label which
indicates whether has a client subscribed a term deposit. We take the variable ‘age’ as a sensitive
variable which is 1 when client’s age is between 25 and 60 years.

• Law dataset is composed of 26,551 law school applicants’ features (e.g. lsat score, family income)
with a binary label which indicates whether applicant is accepted to law school. We take the variable
‘race’ as a sensitive variable which is 1 when applicant is white.

4.3. Performance of the proposed method

We use three classification algorithms for g : logistic regression, boosting, deep neural network. Also
we use logistic regression and deep neural network for classifier f . The structure of DNN for g is two
hidden layers with the number of nodes for each hidden layers is equal to the number of input nodes.
The structure of DNN for f is two hidden layers with the numbers of nodes for each hidden layers
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Table 2: No fairness constraint : This table shows the performance of classfiers with no fairness constraint. We
fit classifiers f through logistic regression( f : Logistic) and DNN( f : DNN). We calculate test data accuracy, DI
and PI in various situations when sensitive variables are not used(S0), sensitive variables are used(S1), and
imputed sensitive variables through Boosting, Logistic and DNN are used

Data Value
f : Logistic f : DNN

S0 S1 Our method S0 S1 Our method
Boost Logistic DNN Boost Logistic DNN

Adults
ACC 0.852 0.852 0.851 0.852 0.852 0.851 0.852 0.851 0.852 0.851
DI 0.172 0.177 0.186 0.187 0.194 0.172 0.178 0.187 0.188 0.195
PI 0.021 0.023 0.026 0.026 0.026 0.021 0.024 0.041 0.026 0.029

Bank
ACC 0.911 0.911 0.911 0.911 0.910 0.911 0.911 0.911 0.911 0.911
DI 0.174 0.229 0.343 0.395 0.336 0.173 0.210 0.316 0.366 0.307
PI 0.007 0.009 0.011 0.013 0.011 0.007 0.008 0.010 0.012 0.011

Law
ACC 0.823 0.823 0.823 0.822 0.823 0.823 0.823 0.823 0.823 0.823
DI 0.119 0.148 0.277 0.277 0.260 0.119 0.145 0.272 0.273 0.251
PI 0.009 0.012 0.022 0.018 0.019 0.009 0.012 0.022 0.018 0.019

are 100 and 50. When optimization we use SGD algorithm : weight decay 5e4, learning rate is 0.005
and the number of epoch is 30,000 and reduce learning rate 0.1 times at epoch [10000, 20000, 25000]
for g. For f , weight decay is 5e4, learning rate is 0.1 and the number of epoch is 50000 and reduce
learning rate 0.1 times at epoch [30000, 40000, 45000].

Whenever the regularization parameter is selected (e.g. Lagrangian multipliers for DI and PI), we
search it so that the corresponding estimated classifier achieves a certain level of fairness which is set
in advance and compare the accuracy of the classifier on test data. We select the one with the highest
train accuracy among classifiers corresponded to regularization parameters that make the DI of the
train data less than 0.05(the case of PI is 0.005). We repeat 5 times to split train data and test data
with ratio 7:3 and average the performances.

For the Wasserstein fair classifier which is a post-processing method, we evaluate the strong de-
mographic parity (SDP) measure as well as the DI.The SDP for a given belief function S (x) that is an
estimate of Pr(Y = 1|X = x) is defined as

1∑
z=0

Eτ∼U[0,1]|Pn(S (X) > τ|Z = z) − Pn(S (X) > τ)|,

where Pn is the empirical distribution.
Results of our numerical studies are presented in Tables 2 to 5. The remarks are summarized as

follows.

• Table 2 summarizes the results without fairness constraints. It is observed that using the sensitive
variable in prediction is not helpful. However, as we see in Tables 3 and 4, using the sensitive
variable in prediction is helpful for fair learning algorithms. It is interesting to figure out why the
role of the sensitive variable in prediction is different for standard and fair learning algorithms,
which we leave as a future work.

• From Tables 3 and 4, we can see that the fair classifiers with an imputed sensitive variable are su-
perior to the fair classifiers without using the sensitive variable (S 0). Moreover, the fair classifiers
with an imputed sensitive variable is not much worse than the fair classifier using the sensitive
variable fully (S 1).
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Table 3: In-processing DI : This table shows the performance of classfiers with DI fairness constraint. We fit
classifiers f through logistic regression( f : Logistic) and DNN( f : DNN). We calculate test data accuracy and DI
in various situations when sensitive variables are not used(S0), sensitive variables are used(S1), and imputed
sensitive variables through Boosting, Logistic and DNN are used

Data Value
f : Logistic f : DNN

S0 S1 Our method S0 S1 Our method
Boost Logistic DNN Boost Logistic DNN

Adults ACC 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832 0.832
DI 0.027 0.028 0.037 0.039 0.045 0.028 0.029 0.037 0.040 0.045

Bank ACC 0.904 0.908 0.908 0.908 0.908 0.905 0.909 0.909 0.909 0.909
DI 0.031 0.007 0.019 0.032 0.017 0.031 0.005 0.025 0.047 0.021

Law ACC 0.811 0.820 0.820 0.821 0.821 0.811 0.820 0.819 0.820 0.820
DI 0.017 0.030 0.082 0.093 0.085 0.016 0.030 0.081 0.091 0.083

Table 4: In-processing PI : This table shows the performance of classfiers with PI fairness constraint. We fit
classifiers f through logistic regression( f : Logistic) and DNN( f : DNN). We calculate test data accuracy and PI
in various situations when sensitive variables are not used(S0), sensitive variables are used(S1), and imputed
sensitive variables through Boosting, Logistic and DNN are used

Data Value
f : Logistic f : DNN

S0 S1 Our method S0 S1 Our method
Boost Logistic DNN Boost Logistic DNN

Adults ACC 0.829 0.832 0.833 0.832 0.833 0.829 0.832 0.833 0.833 0.834
PI 0.003 0.000 0.001 0.001 0.002 0.003 0.000 0.001 0.001 0.002

Bank ACC 0.907 0.909 0.909 0.909 0.909 0.908 0.911 0.911 0.911 0.911
PI 0.002 0.001 0.001 0.002 0.007 0.002 0.004 0.006 0.007 0.006

Law ACC 0.812 0.818 0.817 0.818 0.818 0.812 0.822 0.817 0.819 0.818
PI 0.002 0.000 0.004 0.004 0.004 0.002 0.005 0.004 0.004 0.004

Table 5: Wasserstein post-processing : This table shows the performance of classfiers with Wasserstein
post-processing. We fit classifiers f through logistic regression( f : Logistic) and DNN( f : DNN). We calculate
test data accuracy, DI and SDP in various situations when sensitive variables are used(S1), and imputed
sensitive variables are used (Boosting, Logistic and DNN)

Data Value f : Logistic f : DNN
S1 Boosting Logistic DNN S1 Boosting Logistic DNN

Adults
ACC 0.721 0.832 0.831 0.833 0.720 0.838 0.837 0.839
DI 0.008 0.010 0.003 0.013 0.002 0.013 0.005 0.017

SDP 0.003 0.008 0.006 0.013 0.003 0.008 0.007 0.015

Bank
ACC 0.875 0.909 0.909 0.909 0.872 0.911 0.911 0.911
DI 0.044 0.024 0.048 0.030 0.041 0.024 0.042 0.030

SDP 0.056 0.039 0.064 0.044 0.052 0.037 0.050 0.043

Law
ACC 0.789 0.815 0.817 0.816 0.790 0.825 0.828 0.827
DI 0.034 0.042 0.052 0.044 0.046 0.043 0.052 0.046

SDP 0.029 0.060 0.071 0.066 0.036 0.061 0.070 0.066

• For the Wasserstein fair classifier whose results are presented in Table 5, it is somehow surprising
that the fair classifier with an imputed sensitive variable is superior to that using the sensitive
variable itself. A possible answer would be that an imputed sensitive variable could regularize the
estimated classifier and so that could avoid overfitting.

• In general, the performances of fair prediction models with an surrogated sensitive variable do not
strongly depend on the choice of an imputational algorithm. Table 6 summarizes the accuracies of
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Table 6: Accuracy of g : This table shows the accuracy of various classfiers with-boosting, logistic regression
and DNN

Data Method Acc
train test

Adults
Boosting 0.879 0.848
Logistic 0.844 0.842

DNN 0.872 0.837

Bank
Boosting 0.982 0.967
Logistic 0.964 0.964

DNN 0.972 0.966

Law
Boosting 0.928 0.881
Logistic 0.877 0.878

DNN 0.883 0.882

the three imputation algorithms. Boosting seems to be the best but the performances of the corre-
sponding fair prediction models are similar to the other imputation algorithms. These observations
suggest that the accuracy of an imputed sensitive variable is not important for the performance of
the corresponding fair prediction model unless the accuracy is too bad.

5. Concluding remarks

In this paper, we have illustrated that using an imputed sensitive variable is helpful when using the
sensitive variable itself in the prediction phase is not allowed. Also, the accuracy of imputing the
sensitive variable does not affect the overall performance of fair classifiers. Any reasonable supervised
learning algorithms would be enough to obtain an imputed sensitive variables.

In this paper, we proposed a two-step procedure where we learn the fair classifier and the predic-
tion model for surrogated sensitive variables separately. A better procedure would do this two jobs at
the same time. That is, we are to learn the fair classifier and imputed sensitive variable simultaneously.
This would be a promising direction for future works.
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Fish B, Kun J, and Lelkes ÁD (2016). A confidence-based approach for balancing fairness and ac-
curacy. In Proceedings of the 2016 SIAM International Conference on Data Mining, 144—152,
SIAM.

Goh G, Cotter A, Gupta M, and Friedlander M (2016). Satisfying real-world goals with dataset
constraints. In Advances in Neural Information Processing Systems, 29, 2415-–2423.

Hardt M, Price E, and Srebro N (2016). Equality of opportunity in supervised learning. In Advances
in Neural Information Processing Systems, 3315-–3323.

Ingold D and Soper S (2016).Amazon Doesn’t Consider the Race of Its Customers. Should it, Bloomberg,
April .

Jiang R, Pacchiano A, Stepleton T, Jiang H, and Chiappa S (2020). Wasserstein fair classification. In
Uncertainty in Artificial Intelligence, 862-–872, PMLR.

Kamiran F and Calders T (2012). Data preprocessing techniques for classification without discrimi-
nation. Knowledge and Information Systems, 33, 1-–33.

Kamiran F, Karim A, and Zhang X (2012). Decision theory for discrimination-aware classification.
In 2012 IEEE 12th International Conference on Data Mining, 924-–929, IEEE.

Kamishima T, Akaho S, Asoh H, and Sakuma J (2012). Fairness-aware classifier with prejudice
remover regularizer. In Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases, 35-–50, Springer.

Kleinberg J, Ludwig J, Mullainathan S, and Rambachan A (2018). Algorithmic fairness. In Aea
Papers and Proceedings, 108, 22-–27.

Kusner MJ, Loftus J, Russell C, and Silva R (2017). Counterfactual fairness, In Advances in Neural
Information Processing Systems, 30, 4066-–4076.

Mehrabi N, Morstatter F, Saxena N, Lerman K, and Galstyan A (2021). A survey on bias and fairness
in machine learning, ACM Computing Surveys (CSUR), 54, 1–35.

Menon AK and Williamson RC (2018). The cost of fairness in binary classification, In Conference on
Fairness, Accountability and Transparency, 107—118, PMLR.



Learning fair prediction models with an imputed sensitive variable: Empirical studies 261

Narasimhan H (2018). Learning with complex loss functions and constraints, In International Con-
ference on Artificial Intelligence and Statistics, 1646-–1654. PMLR.

Pleiss G, Raghavan M, Wu F, Kleinberg J, and Weinberger KQ (2017). On fairness and calibration.
In Advances in Neural Information Processing Systems, 5680-–5689.

Quadrianto N, Sharmanska V, and Thomas O (2019). Discovering fair representations in the data do-
main. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
8227—8236.
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