DOI QR코드

DOI QR Code

Seismic resonance vulnerability assessment on shear walls and framed structures with different typologies: The case of Guadalajara, Mexico

  • Ramirez-Gaytan, Alejandro (Departamento de Ciencias Computacionales CUCEI, UdeG) ;
  • Preciado, Adolfo (Departamento del Habitat y Desarrollo Urbano, Instituto Tecnologico y de Estudios Superiores de Occidente (ITESO)) ;
  • Flores-Estrella, Hortencia (Department of Applied Geophysics, Institute of Applied Geosciences, TU Berlin) ;
  • Santos, Juan Carlos (Departamento del Habitat y Desarrollo Urbano, Instituto Tecnologico y de Estudios Superiores de Occidente (ITESO)) ;
  • Alcantara, Leonardo (Instituto de Ingenieria, Universidad Nacional Autonoma de Mexico, Circuito Interior, Ciudad Universitaria)
  • Received : 2021.02.12
  • Accepted : 2022.01.28
  • Published : 2022.03.25

Abstract

Structural collapses can occur as a result of a dynamic amplification of either, the building's seismic response or the ground shaking by local site effects; one of the reasons is a resonance effect due to the proximity of the structural elastic fundamental period TE and the soil fundamental period TS. We evaluate the vulnerability to resonance effects in Guadalajara, México, in a three-step schema: 1) we define structural systems in the building environment of western Guadalajara, in terms of their construction materials and structural components; 2) we estimate TE with different equations, to obtain a representative value in elastic conditions for each structural system; and, 3) we evaluate the resonance vulnerability by the analysis of the ratio between TE and TS. We observe that the larger the soil fundamental period, the higher the resonance vulnerability for buildings with height between 17 and 39 m. For the sites with a low TS, the most vulnerable buildings will be those with a height between 2 and 9 m. These results can be a helpful tool for disaster prevention, by avoiding the construction of buildings with certain heights and structural characteristics that would result in a dangerous proximity between TE and TS.

Keywords

Acknowledgement

We are deeply grateful to Dr. Jorge Aguirre of the Instituto de Ingenieria (IINGEN) of the Universidad Nacional Autonoma de Mexico (UNAM), for providing us with the equipment used in the field measurements. Likewise, we are grateful for the geotechnical information provided by MSc Salvador Lazcano from Suelo Estructura, (Geotechnical Company in Guadalajara). Finally, we thank the referees, whose comments and corrections enriched and improved this work.

References

  1. Al-Nimry, H., Resheidat, M. and Al-Jamal, M. (2014), "Ambient vibration testing of low and medium rise RC frame buildings in Jordan", Soil Dyn. Earthq. Eng., 59, 21-29. https://doi.org/10.1016/j.soildyn.2014.01.002.
  2. Anic, F., Penava, D., Abrahamczyk, L. and Sarhosis, V. (2019), "Computational evaluation of experimental methodologies of out-of-plane behavior of framed-walls with openings", Earthq. Struct., 16(3), http://dx.doi.org/10.12989/eas.2019.16.3.265.
  3. Applied Technology Council (ATC) (1978), Tentative Provisions for the Development of Seismic Regulations for Buildings, National Bureau of Standards, Redwood City, California, USA.
  4. Aungung, S. and Tamia, T. (2013), "Comparison and Kriging and inverse distance weighted (IDW) interpolation methods in lineament extraction and analysis", J. Southeast Asian Appl. Geol., 5(1), 21-29. https://doi.org/10.22146/jag.7204.
  5. Barbat, A.H., Pujades, L.G. and Lantada, N. (2008), "Seismic damage evaluation in urban areas using the capacity spectrum method: application to Barcelona", Soil Dyn. Earthq. Eng., 28(10-11), 851-865. https://doi.org/10.1016/j.soildyn.2007.10.006.
  6. Bazan, E. and Meli, R. (2003), Diseno sismico de edificios, Editorial Limusa, Mexico.
  7. Bilgin, H. and Huta, E. (2018), "Earthquake performance assessment of low and mid-rise buildings: Emphasis on URM buildings in Albania", Earthq. Struct., 14(6), 599-614. https://doi.org/10.12989/eas.2018.14.6.599.
  8. Carreno, M.L., Cardona, O.D. and Barbat, A.H. (2007), "Urban seismic risk evaluation: A holistic approach", Natural Hazards, 40, 137-142. https://doi.org/10.1007/s11069-006-0008-8.
  9. Castillo-Aja, R. and Ramirez-Herrera, M.T. (2017), "Updated tsunami catalog for the Jalisco-Colima coast, Mexico, using data from historical archives", Seismol. Res. Lett., 88(1), 144-158. https://doi.org/10.1785/0220160133
  10. Chavez, M., Garcia, S., Cabrera, E., Ashworth, M., Perea, N., Salazar, A., Chavez, E., Saborio-Ulloa, J. and Saborio-Ortega, J. (2014), "Site effects and peak ground accelerations observed in Guadalajara, Mexico, for the 9 October 1995 Mw 8 Colima-Jalisco, earthquake", B. Seismol. Soc. Am., 104, 1-26. https://doi.org/10.1785/0120130144.
  11. Crowley, H. and Pinho, R. (2010), "Revisiting Eurocode 8 formulas for periods of vibration and their employment in linear seismic analysis", Earthq. Eng. Struct. D., 39, 223-235. https://doi.org/10.1002/eqe.949.
  12. Ditommaso, R., Vona, M., Gallipoli, M.R. and Mucciarelli, M. (2013), "Evaluation and consideration about fundamental period of damaged reinforced concrete buildings", Nat. Hazard Earth Sys., 13, 1903-1912. https://doi.org/10.5194/nhess-13-1903-2013
  13. Erduran, E., Lang, D.H., Lindholm, C.D., Toma-Danila, D., Balan, S.F., Ionescu, V., Aldea, A., Vacareanu, R. and Neagu, C. (2012), "Real-time earthquake damage assessment in the Romanian-Bulgarian border region", Proceedings of the 15th World Conference on Earthquake Engineering, Lisbon, September.
  14. Eurocode 8 (2004), Design of structures for earthquake resistance - Part 1: General rules, seismic actions and rules for buildings, European Committee for Standardization; Brussels, Belgium.
  15. Flores-Estrella, H., Lomnitz, C. and Yussim, S. (2007), "Seismic response of Mexico city basin: A review of twenty years of research", Nat. Hazards, 40, 357-372. https://doi.org/10.1007/s11069-006-0034-6.
  16. Garcia-Acosta, V. and Suarez-Reinoso, G. (1996), Los sismos en la historia de Mexico, Universidad Nacional Autonoma de Mexico, CIESAS, Mexico. 718.
  17. Gates, W. and Foth, V. (1978), "Building period correlation", Technical Report to the Applied Technology Council; Palo Alto, California, USA.
  18. Goel, K.R. and Chopra, K.A. (1997), "Period formulas for moment-resisting frame buildings", J. St. Eng., 123, 1454-1461.https://doi.org/10.1061/(ASCE)0733-9445(1997)123:11(1454).
  19. Housner, G.W. and Brady, A.G.E. (1963), "Natural periods of vibration of buildings", J. Eng. Mech. Div., 89(4), 31-68. https://doi.org/10.1061/JMCEA3.0000404
  20. Instituto Nacional de Estadistica y Geografia (INEGI) (2010), General Population Census of Jalisco, Mexico of 2010, National Institute of Statistics and Geography, Mexico.
  21. Kostinakis, K.G. (2018), "Impact of the masonry infills on the correlation between seismic intensity measures and damage of R/C buildings", Earthq. Struct., 14(1), 55-71. http://dx.doi.org/10.12989/eas.2018.14.1.055.
  22. Lantada, N., Irizarry, J., Barbat, A.H., Goula, X., Roca, A., Susagna, T. and Pujades, L.G. (2010), "Seismic hazard and risk scenarios for Barcelona, Spain, using the risk-UE vulnerability index method", Bull. Earthq. Eng., 8, 201-229. https://doi.org/10.1007/s10518-009-9148-z.
  23. Michel, C., Gueguen, P., Lestuzzi, P. and Bard, P.Y. (2010), "Comparison between seismic vulnerability models and experimental dynamic properties of existing buildings in France", Bull. Earthq. Eng., 8(6), 1295-1307. https://doi.org/10.1007/s10518-010-9185-7.
  24. NBCC (2005), National Building Code of Canada. National Research Council Canada; Ottawa, Ontario, Canada.
  25. NTC-DEM (2017), Normas Tecnicas Complementarias para Ciudad de Mexico, Normas Tecnicas Complementarias para Diseno y Construccion de Estructuras de Mamposteria; Mexico.
  26. Preciado, A. (2011), "Seismic vulnerability reduction of historical masonry towers by external prestressing devices", Ph.D. Dissertation; Technical University of Braunschweig, Germany and University of Florence, Italy.
  27. Preciado, A. (2019), Proteccion Sismica con Disipadores Viscosos y Viscoelasticos de Edificios Aporticados de 15 Niveles de Concreto Localizados en Guadalajara, Mexico, Postgraduate Dissertation, Universidad Politecnica de Cataluna, Barcelona, Spain.
  28. Preciado, A., Bartoli, G. and Budelmann, H. (2015b), "Fundamental aspects on the seismic vulnerability of ancient masonry towers and retrofitting techniques", Earthq. Struct., 9(2), 339-352. http://dx.doi.org/10.12989/eas.2015.9.2.339.
  29. Preciado, A., Ramirez-Gaytan, A., Lazcano, S., Preciado, I., Gutierrez, N. and Santos, J.C. (2017), "Vulnerabilidad de edificios ante resonancia sismica en Guadalajara y Zapopan por el sismo del 11 de mayo de 2016 Mw=4.9", Proceedings of the XXI National Conference on Earthquake Engineering, Guadalajara, September.
  30. Preciado, A., Ramirez-Gaytan, A., Salido-Ruiz, R.A., CaroBecerra, J.L. and Lujan-Godinez, R. (2015a), "Earthquake risk assessment methods of unreinforced masonry structures: Hazard and vulnerability", Earthq. Struct., 9(4), 719-733. https://doi.org/10.12989/eas.2015.9.4.719.
  31. Preciado, A., Ramirez-Gaytan, A., Santos, J.C. and Rodriguez, O. (2020), "Seismic vulnerability assessment and reduction at a territorial scale on masonry and adobe housing by rapid vulnerability indicators: the case of Tlajomulco, Mexico", Int. J. Disast. Risk Re., 44, 101425. https://doi.org/10.1016/j.ijdrr.2019.101425.
  32. Quintanar, L., Rodriguez-Lozoya, H.E., Ortega, R., GomezGonzalez, J.M., Dominguez, T., Javier, C., Alcantara, L. and Rebollar, C.J. (2010), "Source Characteristics of the 22 January 2003 Mw= 7.5 Tecoman, Mexico, Earthquake: new insights", Pure Appl. Geophys., 168(8), 1339-1353. https://doi.org/10.1007/s00024-010-0202-1.
  33. Ramirez-Gaytan, A., Flores-Estrella, H., Preciado, A., Bandy, W.L., Lazcano, S., Alcantara-Nolasco, L., Aguirre-Gonzalez, J. and Korn, M. (2020), "Subsoil classification and geotechnical zonation for Guadalajara City, Mexico: Vs30, soil fundamental periods, 3D structure and profiles", Near Surface Geophys., 18(2), 175-188. https://doi.org/10.1002/nsg.12085.
  34. Ranjbaran, F. and Kiyani, A.R. (2017), "Seismic vulnerability assessment of confined masonry buildings based on ESDOF", Earthq. Struct., 12(5), 489-499. http://dx.doi.org/10.12989/eas.2017.12.5.489.
  35. RCDF (2004), Construction Code of Mexico City. Government of Mexico City; Mexico.
  36. Rezaie, F. and Panahi, M. (2015), "GIS modeling of seismic vulnerability of residential fabrics considering geotechnical, structural, social and physical distance indicators in Tehran using multi-criteria decision-making techniques", Natrl. Hazd. E. Sys. Sci., 15, 461-474. https://doi.org/10.5194/nhess-15-461-2015.
  37. Ruiz-Garcia, J. (2017), "Observations from the September 19, 2017 (Mw=7.1) Puebla-Morelos earthquake in Mexico City", Earthq. Eng. Res. Inst., https://doi.org/10.13140/RG.2.2.23956.40322.
  38. Salama, M.I. (2013), "Experimental estimation of time period of vibration for moment resisting frame buildings", Proceedings of the 2nd Turkish Conference on Earthquake Engineering and Seismology (TDMSK), Antakya, September.
  39. Salameh, C., Guillier, B., Harb, J., Cornou, C., Bard, P.Y., Voisin, C. and Mariscal, A. (2016), "Seismic response of Beirut (Lebanon) buildings: instrumental results from ambient vibrations", Bull. Earthq. Eng., 14(10), 2705-2730. https://doi.org/10.1007/s10518-016-9920-9
  40. Sofi, M., Hutchinson, G.L. and Duffield, C. (2015), "Review of techniques for predicting the fundamental period of multi-storey buildings: effects of non-structural components", Int. J. Struct. Stab. Dy., 15(2), 1450039. https://doi.org/10.1142/S0219455414500394.
  41. Suter, M. (2015), "The A.D. 1567 Mw 7.2 Ameca, Jalisco, earthquake (western trans-Mexican volcanic belt): Surface rupture parameters, seismogeovogical effects, and macroseismic intensities from historical sources", Bull. Seism. Soc. Am., 105(2A), 646-656. https://doi.org/10.1785/0120140163.
  42. Suter, M. (2017), "The 2 October 1847Ml 5.7 Chapala graben triggered earthquake (Trans-Mexican Volcanic Belt, west-central Mexico): Macroseismic observations and hazard implications", Seismol. Res. Lett., 89(1), 35-46. https://doi.org/10.1785/0220170101.
  43. Tarque, N., Camata, G., Benedetti, A. and Spacone, E. (2017), "Alternative approach for reproducing the in-plane behaviour of rubble stone walls", Earthq. Struct., 13(1), 29-38. http://dx.doi.org/10.12989/eas.2017.13.1.029.
  44. UBC (1997), Uniform Building Code, International conference of building officials; Whittier, California, USA.
  45. UCOL (1997), The Macro-Earthquake of Manzanillo Occurred on October 9th, 1995, University of Colima (UCOL), Government of the state of Colima and the Mexican Society of Seismic Engineering, Mexico.
  46. Vicente, R. Parodi, S., Lagomarsino, S., Varum, H. and Mendesda-Silva, J.A. (2008), "Seismic vulnerability assessment, damage scenarios and loss estimation: case study of the old city centre of Coimbra, Portugal", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, October. https://doi.org/10.1007/s10518-010-9233-3.
  47. Zobin, V.M. (2004), The earthquakes and their hazards: How to survive to them?, University of Colima, Mexico.