References
- Ansari, M., Daneshjoo, F., Safiey, A., Hamzehkolaei, N.S. and Sorkhou M. (2019), "Fiber element-based nonlinear analysis of concrete bridge piers with consideration of permanent displacement", Struct. Eng. Mech., 69(3), 243-255, https://doi.org/10.12989/sem.2019.69.3.243.
- Bakhoum, M.M. and Athanasious, S. (2001), "Study of the dynamic and equivalent static analysis methods for seismic design of bridges: ranges of applicability, effect of modeling assumptions, and support conditions", Proceedings of the Eighth International Conference on the Application of Artificial Intelligence to Civil and Structural Engineering Computing, Stirling, Scotland, September.
- Barbato, M. and Conte, J.P. (2005), "Finite element response sensitivity analysis: a comparison between force-based and displacement-based frame element models", Comput. Methods Appl. Mech. Eng., 194(12-16), 1479-1512. https://doi.org/10.1016/j.cma.2004.04.011.
- Chenouda, M. and Ayoub, A. (2009), "Probabilistic collapse analysis of degrading multi degree of freedom structures under earthquake excitation", Eng. Struct., 31(12), 2909-2921, https://doi.org/10.1016/j.engstruct.2009.07.018.
- Correia, A.A., Almeida, J.P. and Pinho, R. (2008), "Force-based versus displacement-based formulations in the cyclic nonlinear analysis of RC frames", Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
- Dukes, J., Mangalathu, S., Padgett, J.E. and DesRoches, R. (2018), "Development of a bridge-specific fragility methodology to improve the seismic resilience of bridges", Earthq. Struct., 15(3), 253-261, https://doi.org/10.12989/eas.2018.15.3.253.
- EN 1992-1-1 (2004), Eurocode 2 (EC2): Design of concrete structures. Part 1-1: General rules and rules for buildings, European Committee for Standardization (CEN), Brussels, Belgium.
- EN 1992-2 (2005), Eurocode 2 (EC2): Design of concrete structures. Part 2: Concrete bridges - design and detailing rules, European Committee for Standardization (CEN), Brussels, Belgium.
- EN 1998-1 (2004), Eurocode 8 (EC8): Design of structures for earthquake resistance. General rules, seismic actions and rules for buildings, European Committee for Standardization (CEN), Brussels, Belgium.
- EN 1998-2 (2005), Eurocode 8 (EC8): Design of structures for earthquake resistance. Bridges, European Committee for Standardization (CEN), Brussels, Belgium.
- Fakhry M.F., El Sayed M.M. and Mehanny, S.S.F. (2019), "Response of skew bridges with permutations of geometric parameters and bearings articulation", Earthq. Struct., 17(5), 477-487, https://doi.org/10.12989/eas.2019.17.5.477.
- Farag, M.M.N., Mehanny, S.S.F., Kohrangi, M., Vamvatsikos, D. and Bakhoum, M.M. (2019), "Precast beam bridges with a buffer-gap-elastomeric bearings system: Uncertainty in design parameters and randomness in ground records", ASCE J. Bridge Eng., 24(5), ttps://doi.org/10.1061/(ASCE)BE.1943-5592.0001396.
- Farag, M.M.N. (2013), Inelastic Seismic Response of Bridges with a Buffer-Gap-Elastomeric Bearing System, Master Theis, Cairo University, Egypt.
- Farag, M., Mehanny, S.S. and Bakhoum, M.M. (2015), "Establishing optimal gap size for precast beam bridges with a buffer-gap-elastomeric bearings system", Earthq. Struct., 9(1), 195-219. https://doi.org/10.12989/eas.2015.9.1.195.
- Gharakhanloo, A., Kaynia, A. and Tsionis, G. (2015), "Distributed and concentrated inelasticity beam-column elements: application to reinforced concrete frames and verification", Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering, Crete Island, Greece, May.
- Kang, Y.J. (1977), Nonlinear Geometric, Material and Time Dependent Analysis of Reinforced and Prestressed Concrete Frames, Ph.D. Dissertation, Division of Structural Engineering and Structural Mechanics, University of California, Berkeley.
- Kun, C., Yang, Z. and Chouw, N. (2018), "Seismic response of skewed bridges including pounding effects", Earthq. Struct., 14(5), 467-476, https://doi.org/10.12989/eas.2018.14.5.467.
- Li, S., Zhai, C.H. and Xie, L.L. (2012), "Evaluation of displacement-based, force-based and plastic hinge elements for structural non-linear static analysis", Adv. Struct. Eng., 15(3), 477-488. https://doi.org/10.1260/1369-4332.15.3.477.
- Liu, Y., Paolacci, F. and Lu, D.G. (2017), "Seismic fragility of a typical bridge using extrapolated experimental damage limit states", Earthq. Struct., 13(6), 599-611, https://doi.org/10.12989/eas.2017.13.6.599.
- Luco, N. and Cornell, C.A. (1998), "Effects of random connection fractures on the demands and reliability for a three-story pre-Northridge (SMRP) structure", Proceedings of the 6th U.S. National Conference on Earthquake Engineering, Oakland, U.S.A., May.
- Mazzoni, S., McKenna, F., Scott, M.H. and Fenves, G.L. (2006), Opensees Command Language Manual, Pacific Earthquake Engineering Research (PEER) Center, U.S.A., 264.
- Morkos, B. (2021), "Study effect of FEM modeling techniques and parameters on non-linear dynamic analysis of mid-span concrete bridges", M.Sc. Dissertation, Cairo University, Egypt.
- Muntasir Billah, A.H.M. and Shahria Alam, M. (2015), "Seismic fragility assessment of highway bridges: A state-of-the-art review", Struct. Infrastruct. Eng., 11(6), 804-832. https://doi.org/10.1080/15732479.2014.912243.
- OpenSees V3.2.1 (Computer software), Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, U.S.A.
- Pacific Earthquake Engineering Research Center (PEER), University of California, Berkeley, CA, U.S.A. https://ngawest2.berkeley.edu/
- Papadopoulos, V. and Fragiadakis, M. (2015), "Plastic hinge and plastic zone seismic analysis of frames", Encyclopedia of Earthquake Engineering, Springer, Berlin, Germany. https://doi.org/10.1007/978-3-642-35344-4_137.
- Paulay, T. and Priestley, M.N. (1992), Seismic Design of Reinforced Concrete and Masonry Buildings, John Wiley and Sons, NJ, U.S.A.
- Ramanathan, K., Jeon, J.S., Zakeri, B., DesRoches, R. and Padgett, J.E. (2015), "Seismic response prediction and modeling considerations for curved and skewed concrete box-girder bridges", Earthq. Struct., 9(6), 1153-1179, https://doi.org/10.12989/eas.2015.9.6.1153.
- Razzaghi, M.S., Safarkhanlou, M., Mosleh, A. and Hosseini, P. (2018), "Fragility assessment of RC bridges using numerical analysis and artificial neural networks", Earthq. Struct., 15(4), 431-441. https://doi.org/10.12989/eas.2018.15.4.431.
- Spacone, E., Filippou, F.C. and Taucer, F. (1996), "Fibre beam- column model for non-linear analysis of R/C frames: Part I. Formulation", Earthq. Eng. Struct. Dyn., 25(7), 711-725, https://doi.org/10.1002/(SICI)1096-9845(199607)25:7<711::AID-EQE576>3.0.CO;2-9.
- Vamvatsikos, D. and Cornell, C.A. (2002), "Incremental dynamic analysis", Earthq. Eng. Struct. Dynam., 31(3), 491-514, https://doi.org/10.1080/15732479.2014.912243.
- Wu, R.Y. and Pantelides, C.P. (2018), "Concentrated and distributed plasticity models for seismic repair of damaged RC bridge columns", ASCE J. Compos. Constr., 22(5), https://doi.org/10.1061/(ASCE)CC.1943-5614.0000879.