DOI QR코드

DOI QR Code

Development of Thermostat for the Fluxgate Magnetometer in Icheon Geomagnetic Observatory and Stability Evaluation after Installation

이천 지자기 관측소 플럭스게이트 자력계 온도 조절 장치 개발 및 설치 후 안정성 자체 평가

  • Dooyoung, Choi (Chung-buk National University) ;
  • Seunguk, Lee (Chung-buk National University) ;
  • Joonsung, Kim (Chung-buk National University) ;
  • Dae-Young, Lee (Chung-buk National University) ;
  • Kyu-Cheol, Choi (SELab) ;
  • Junghee, Cho (Korean Space Weather Center)
  • 최두영 (충북대학교) ;
  • 이승욱 (충북대학교) ;
  • 김준성 (충북대학교) ;
  • 이대영 (충북대학교) ;
  • 최규철 ((주)에스이랩) ;
  • 조정희 (우주전파센터)
  • Received : 2022.06.30
  • Accepted : 2022.08.01
  • Published : 2022.08.31

Abstract

This paper reports on the design and installation of a thermostat to keep the temperature of the fluxgate magnetometer constant and the data stability evaluation after installation. The thermostat was installed at the Icheon Geomagnetic Observatory operated by the Korean Space Weather Center of National Radio Research Agency. It was designed in consideration of stability of temperature control against safety incident, potential effects on magnetic field measurement, and the temperature control efficiency. After the temperature control device was installed, it was confirmed that the temperature was constantly maintained at the level of 20℃. Delta F and baseline values were used to evaluate geomagnetic data stability, and it was confirmed that delta F and baseline fluctuations were reduced after installation of the thermostat.

본 논문에서는 온도에 민감한 플럭스게이트 자력계 센서 온도를 일정하게 유지하기 위한 온도 조절 장치의 설계 및 설치, 그리고 설치 이후 데이터 안정성 평가에 대하여 기술하였다. 온도 조절 장치는 국립전파연구원 우주전파센터에서 운영 중인 이천 지자기 관측소에 설치되었다. 온도 조절 장치는 사고 안정성, 자기장 측정에 미치는 영향, 온도 조절 효율을 고려하여 설계하였다. 온도 조절 장치 설치 이후, 온도가 20℃ 수준에서 일정하게 유지되는 것을 확인하였다. 지자기 데이터 안정성 평가를 위하여 델타 F(delta-F)와 베이스라인(baseline) 값을 이용하였으며, 장치 설치 이후 델타 F와 베이스라인의 변동이 줄어든 것을 확인하였다.

Keywords

Acknowledgement

본 연구는 우주전파센터와 에스이랩의 지원을 받아 수행되었습니다. 지원에 감사드립니다.

References

  1. Shanahan T, Turbitt C, Flower S, Experiences in designing a low-cost temperature controlled variometer enclosure, in XVth IAGA Workshop on Geomagnetic Observatory Instruments and Data Processing, Cadiz, Spain, 4-14 Jun 2012.
  2. Pulz E, Linth HJ, Elimination of magnetic perturbations generated from a warm-water heating system in magnetic measurement buildings, in Xth IAGA Workshop on Geomagnetic Instruments Data Acquisition and Processing, Hermanus, South Africa, 5-24 Apr 2002.
  3. Poedjono B, Beck N, Buchanan A, Brink J, Longo J, et al., Geomagnetic referencing in the Arctic environment, in OTC Arctic Technology Conference, Moscow, Russia, 18-20 Oct 2011.
  4. Hughes J, Schaub H, Space weather influence on electromagnetic geosynchronous debris perturbations using statistical fluxes, Space Weather. 16, 391-405 (2018). https://doi.org/10.1002/2017sw001768
  5. Horbury TS, O'Brien H, Carrasco Blazquez I, Bendyk M, Brown P, et al., The solar orbiter magnetometer, Astron. Astrophys. 642, A9 (2020). https://doi.org/10.1051/0004-6361/201937257
  6. Auster HU, Glassmeier KH, Magnes W, Aydogar O, Baumjohann W, et al., The THEMIS fluxgate magnetometer, Space Sci. Rev. 141, 235-264 (2008). https://doi.org/10.1007/s11214-008-9365-9
  7. Amran SM, Kim WS, Cho HR, Park PG, Stability analysis of geomagnetic baseline data obtained at Cheongyang observatory in Korea, Geosci. Instrum. Methods Data Syst. 6, 231-238 (2017). https://doi.org/10.5194/gi-6-231-2017
  8. St-Louis B, INTERMAGNET technical reference manual, version 4.6 (2014).
  9. Csontos A, Hegymegi L, Heilig B, Temperature tests on modern magnetometers, Publ. Inst. Geophys. Pol. Acad. Sci. C-99, 2007.
  10. Hong S, Kim JH, Marusenkov A, Hegymegi L, Csontos A, The temperature stability of LEMI025 1-second variometer: case study in the Icheon observatory, J. Ind. Geophys. Union JIGU. 2, 42-46 (2016).