DOI QR코드

DOI QR Code

알지네이트-폴리비닐알콜 블랜드 항균 필름 제조를 위한 카다놀 함량의 영향

Effect of Cardanol Content on the Antibacterial Films Derived from Alginate-PVA Blended Matrix

  • 안희주 (부경대학교 화학공학과) ;
  • 강경수 (부경대학교 화학공학과) ;
  • 송윤하 (부경대학교 화학공학과) ;
  • 이다해 (부경대학교 화학공학과) ;
  • 김문호 (부경대학교 고분자공학과) ;
  • 이재경 (부경대학교 화학공학과) ;
  • 우희철 (부경대학교 화학공학과)
  • Ahn, Hee Ju (Department of Chemical Engineering, Pukyong National University) ;
  • Kang, Kyung Soo (Department of Chemical Engineering, Pukyong National University) ;
  • Song, Yun Ha (Department of Chemical Engineering, Pukyong National University) ;
  • Lee, Da Hae (Department of Chemical Engineering, Pukyong National University) ;
  • Kim, Mun Ho (Deapartment of Polymer Engineering, Pukyong National University) ;
  • Lee, Jae Kyoung (Department of Chemical Engineering, Pukyong National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University)
  • 투고 : 2022.01.28
  • 심사 : 2022.02.21
  • 발행 : 2022.03.31

초록

오늘날 다양한 용도로 사용하고 있는 석유계 플라스틱은 지구 환경 및 생태계에 큰 위협을 주는 존재로서 이를 대체하기 위한 방안을 찾기 위해 범세계적으로 각 분야에서 많은 노력이 가해지고 있다. 이런 관점에서 본 연구에서는 생분해성 특성을 지닌 해양 바이오매스 유래 알지네이트에 석유계 기반의 폴리비닐알콜(Poly vinyl alcohol; PVA)을 10 wt% 혼합하여 알지네이트 기반 폴리비닐알콜 블렌드 필름(alginate-based PVA blend films)을 수용액상으로부터 캐스팅하여 제조하였다. 가교제로는 글루타르알데히드가 사용되었으며, 필름에 항균성을 부여하고자 캐슈넛껍질액으로부터 추출된 알킬 페놀계 바이오오일인 카다놀(cardanol) 성분을 0.1 ~ 2.0 wt% 범위로 첨가하였다. 이렇게 제조된 블렌드 필름의 특성을 알아보기 위하여 푸리에변환 적외선 분광법(FTIR), 열중량분석(TGA), 인장강도, 팽윤도 및 항균성 등을 측정하였다. FTIR과 열중량분석, 인장강도 결과들은 주성분인 알지네이트에 PVA가 하나의 매트릭스 상을 이루며 잘 분산되어 있음을 보여주었고, 특히, 단일 성분일 때 약점으로 알려진 알지네이트의 취성(brittle)과 PVA의 약한 열적 내구성이 블렌드를 이루면서 PVA와 알지네이트 기능기들의 가교 및 수소결합으로 인하여 열적, 기계적인 물성들이 향상됨을 보였다. 카다놀 성분의 첨가는 황색포도상구균과 대장균에 대한 항균성을 크게 향상시켜 60 min 접촉시간에서 황색포도상구균의 사멸율은 98% 이상이고, 대장균의 경우 약 70%의 우수한 향균 성능을 나타냈다. 알지네이트-PVA 블렌드에 대한 최적 항균성은 카다놀이 0.1 ~ 0.5 wt% 범위이었다. 이상의 결과들을 볼 때, 카다놀을 함유한 알지네이트-PVA 블렌드 필름은 식품 포장제 및 여러 항균소재로서 응용할 수 있을 것으로 판단된다.

Petroleum-based plastics are used for various purposes and pose a significant threat to the earth's environment and ecosystem. Many efforts have been taken globally in different areas to find alternatives. As part of these efforts, this study manufactured alginate-based polyvinyl alcohol (PVA) blended films by casting from an aqueous solution prepared by mixing 10 wt% petroleum-based PVA with biodegradable, marine biomass-derived alginate. Glutaraldehyde was used as a cross-linking agent, and cardanol, an alkyl phenol-based bio-oil extracted from cashew nut shell, was added in the range of 0.1 to 2.0 wt% to grant antibacterial activity to the films. FTIR and TGA were performed to characterize the manufactured blended films, and the tensile strength, degree of swelling, and antibacterial activity were measured. Results obtained from the FTIR, TGA, and tensile strength test showed that alginate, the main component, was well distributed in the PVA by forming a matrix phase. The brittleness of alginate, a known weakness as a single component, and the low thermal durability of PVA were improved by cross-linking and hydrogen bonding of the functional groups between alginate and PVA. Addition of cardanol to the alginate-based PVA blend significantly improved the antibacterial activity against S. aureus and E. coli. The antibacterial performance was excellent with a death rate of 98% or higher for S. aureus and about 70% for E. coli at a contact time of 60 minutes. The optimal antibacterial activity of the alginate-PVA blended films was found with a cardanol content range between 0.1 to 0.5 wt%. These results show that cardanol-containing alginate-PVA blended films are suitable for use as various antibacterial materials, including as food packaging.

키워드

과제정보

이 논문은 부경대학교 자율창의학술연구비(2021년)에 의하여 연구되었음.

참고문헌

  1. Elsawy, M. A., Kim, K. H., Park, J. W., and Deep A., "Hydrolytic Degradation of Polylactic Acid (PLA) and Its Composites", Renew. Sust. Energ. Rev. 79, 1346-1352 (2017). https://doi.org/10.1016/j.rser.2017.05.143
  2. Qi, X., Ren, Y., and Wang, X., "New Advances in the Biodegradation of Poly(lactic) Acid", Int. Biodeter. Biodegr. 117, 215-223 (2017). https://doi.org/10.1016/j.ibiod.2017.01.010
  3. Eriksen, M. K., Christiansen, J. D., Daugaard, A. E., and Astrup, T. F., "Closing the Loop for PET, PE and PP Waste from Households: Influence of Material Properties and Product Design for Plastic Recycling", Waste Manage, 96, 75-85 (2019). https://doi.org/10.1016/j.wasman.2019.07.005
  4. Pawar, S. N., and Edgar, K. J., "Alginate Derivatization: A Review of Chemistry, Properties and Applications", Biomaterials, 33, 3279-3305 (2012). https://doi.org/10.1016/j.biomaterials.2012.01.007
  5. Patel, M. A., AbouGhaly M. H. H., Schryer-Praga, J. V., and Chadwick, K., "The Effect of Ionotripic Gelation Residence time on Alginate Cross-linking and Properties", Carbohyd. Polym., 155, 362-371 (2017). https://doi.org/10.1016/j.carbpol.2016.08.095
  6. Pourjafar, S., Rahimpour, A., and Jahanshahi, M., "Synthesis and Characterization of PVA/PES Thin Film Composite Nanofiltration Membrane Modified with TiO2 Nanoparticles for Better Performance and Surface Properties", J. Ind. and Eng. Chem., 18, 1398-1405 (2012). https://doi.org/10.1016/j.jiec.2012.01.041
  7. Shivakumara, L. R., and Demappa, T., "Synthesis and Swelling Behavior of Sodium Alginate/Poly(vinyl alcohol) Hydrogels", Turk J. Pharm. Sci., 16(3), 252-260 (2019). https://doi.org/10.4274/tjps.galenos.2018.92408
  8. Seo H-J., Seong H-L., Kim J-H., and Son T-W., "Effect of Zn Ion Concentration on the Antimicrobial Property for Zinc-Alginate Film", Polymer(Korea), 40(5), 691-699 (2016). https://doi.org/10.7317/pk.2016.40.5.691
  9. Fertah, M., Belfkira, A., Dahmane, E., Taourirte, M., and Brouillette, F., "Extraction and Characterization of Sodium Algiante from Moroccan Laminaria Digitata Brown Seaweed", Arab J. Chem., 10, S3707-S3714 (2017). https://doi.org/10.1016/j.arabjc.2014.05.003
  10. Filipkowska, U., Szymczyk, P., Kuczajowska-Zadrozna, M., and Jozwiak, T.,"Effect of Conditions of Air-Lift Type Reactor Work on Cadmium Adsorption", Korean J. Chem. Eng., 32(10), 2024-2030 (2015). https://doi.org/10.1007/s11814-015-0022-1
  11. Ali, M., Lu, Y., Ahmed, S., Khanal, S., and Xu, S.,"Effect of Modified Cardanol as Secondary Plasticizer on Thermal and Mechanical Properties of Soft Polyvinyl Chloride", ACS Omega, 5, 17111-17117 (2020). https://doi.org/10.1021/acsomega.0c00826
  12. Jamnongkan, T., Wattanakornsiri, A., Wachirawongsakorn, P., and Kaewpirom, S., "Effects of Crosslinking Degree of Poly(vinyl alcohol) Hydrogel in Aqueous Solution: Kinetics and Mechanism of Copper(II) Adsorption", Polym. Bull., 71, 1081-1100 (2014). https://doi.org/10.1007/s00289-014-1112-7
  13. Soares, J. P., Santos, J. E., Chierice, G. O., and Cavalheiro, E. T. G., "Thermal Behavior of Alginic Acid and Its Sodium Salt", Eclet. Quim., 29(2), 53-56, (2004). https://doi.org/10.1590/S0100-46702004000200008
  14. Holland, B. J., and Hay, J. N., The Thermal Degradation of Poly(vinyl alcohol). Polymer, 42, 6775-6783 (2001). https://doi.org/10.1016/S0032-3861(01)00166-5
  15. Rudra, R., Kumar, V., and Kundu, P. P., "Acid Catalysed Cross-linking of Poly vinyl alcohol (PVA) by Glutaraldehyde: Effect of Crosslink Density on the Characteristics of PVA Membranes Used in Single Chambered Microbial Fuel Cells", RSC Adv., 5, 83436-83447 (2015). https://doi.org/10.1039/C5RA16068E
  16. Yang, M., Shi, J., and Xia, Y., "Effect of SiO2, PVA and Glycerol Concentrations on Chemical and Mechanical Properties of Alginate-Based Films", Int. J. Biol. Macromol., 107, 2686-2694, (2018). https://doi.org/10.1016/j.ijbiomac.2017.10.162
  17. Rafiq, M., Hussain, T., Abid, S., Nazir, A., and Massod, R.,"Development of Sodium Alginate/PVA Antibacterial Nanofibers by the Incorporation of Essential Oils", Mater. Res. Express, 5, 035007, (2018). https://doi.org/10.1088/2053-1591/aab0b4
  18. Kim, S. H., Lee, H. S., Ryu, D. S., Choi, S. J., and Lee, D. S., "Antibacterial Activity of Silver-nanoparticles Against Staphylococcus aureus and Escherichia coli", Korean J. Microbiol. Biotechnol., 39, 77-85 (2011).