DOI QR코드

DOI QR Code

Life Cycle Assessment of Carbon Monoxide Production via Electrochemical CO2 Reduction: Analysis of Greenhouse Gas Reduction Potential

전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 전과정평가 : 온실가스 저감 잠재량 분석

  • Roh, Kosan (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 노고산 (충남대학교 응용화학공학과)
  • Received : 2022.01.26
  • Accepted : 2022.02.21
  • Published : 2022.03.31

Abstract

Electrochemical carbon dioxide (CO2) reduction technology, one of the promising solutions for climate change, can convert CO2, a representative greenhouse gas (GHG), into valuable base chemicals using electric energy. In particular, carbon monoxide (CO), among various candidate products, is attracting much attention from both academia and industry because of its high Faraday efficiency, promising economic feasibility, and relatively large market size. Although numerous previous studies have recently analyzed the GHG reduction potential of this technology, the assumptions made and inventory data used are neither consistent nor transparent. In this study, a comparative life cycle assessment was carried out to analyze the potential for reducing GHG emissions in the electrochemical CO production process in a more transparent way. By defining three different system boundaries, the global warming impact was compared with that of a fossil fuel-based CO production process. The results confirmed that the emission factor of electric energy supplied to CO2-electrolyzers should be much lower than that of the current national power generation sector in order to mitigate GHG emissions by replacing conventional CO production with electrochemical CO production. Also, it is important to disclose transparently inventory data of the conventional CO production process for a more reliable analysis of GHG reduction potential.

전기화학적 이산화탄소 환원 기술은 전기에너지를 이용하여 대표적인 온실가스인 이산화탄소를 유용한 기초 화학제품으로 전환시킬 수 있는 유망한 기술 중 하나다. 특히, 다양한 후보 제품 중 일산화탄소는 높은 Faraday 효율과 우수한 경제성을 나타내기 때문에 학계와 산업계의 많은 관심을 받고 있다. 과거 여러 연구진이 본 기술의 온실가스 저감 잠재량을 정량적으로 분석했으나, 분석 과정에서 도입된 과정과 사용된 인벤토리 데이터의 일관성 및 투명성에 문제가 제기된다. 본 연구에서는 전기화학적 이산화탄소 환원을 통한 일산화탄소 생산 공정의 온실가스 저감 잠재량 분석을 위한 전과정평가를 수행했다. 세 종류의 시스템 경계를 정의 후 각각의 지구온난화지수를 화석연료 기반 일산화탄소 생산 공정과 비교했다. 분석 결과, 전기화학적 일산화탄소 생산 기술을 도입하여 온실가스를 저감하기 위해서는 전해조 구동에 필요한 전기에너지의 배출계수가 현재 국내 발전부문의 배출계수보다 충분히 낮아야 한다는 점을 확인했다. 또한, 신뢰성 있는 온실가스 저감 잠재량 분석을 위해서는 기존의 화석연료 기반 일산화탄소 생산 공정의 인벤토리 정보를 투명하게 공개하는 것이 중요함을 밝혔다.

Keywords

Acknowledgement

본 과제(결과물)는 2021년도 교육부의 재원으로 한국연구재단의 지원을 받아 수행된 지자체-대학 협력기반 지역혁신 사업의 결과입니다(2021RIS-004).

References

  1. Global Monitoring Laboratory, "Trends in Atmospheric Carbon Dioxide," 2022. [Online]. Available: https://gml.noaa.gov/ccgg/trends/. [Accessed: 25-Feb-2022].
  2. Choi, J.-N., Chang, T. S., and Kim, B.-S., "Recent Development of Carbon Dioxide Conversion Technology," Clean Technol., 18(3), 229-249 (2012). https://doi.org/10.7464/KSCT.2012.18.3.229
  3. Bierhals, J., "Carbon Monoxide," in Ullmann's Encyclopedia of Industrial Chemistry, Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 565-582 (2001).
  4. Chae, S. Y., Lee, S. Y., Han, S. G., Kim, H., Ko, J., Park, S., Joo, O.-S., Kim, D., Kang, Y., Lee, U., Hwang, Y. J., and Min, B. K., "A perspective on practical solar to carbon monoxide production devices with economic evaluation," Sustain. Energy Fuels, 4(1), 199-212 (2020). https://doi.org/10.1039/C9SE00647H
  5. Luna, P. D., Hahn, C., Higgins, D., Jaffer, S. A., Jaramillo, T. F., and Sargent, E. H., "What would it take for renewably powered electrosynthesis to displace petrochemical processes?," Science (80-. )., 364(6438), eaav3506, (2019) https://doi.org/10.1126/science.aav3506
  6. KRICT, "Next Generation Carbon Upcycling Project Group," 2022. [Online]. Available: https://ncup.krict.re.kr/. [Accessed: 15-Jan-2022].
  7. KIST, "Carbon to X Technical Development Research Group," 2020. [Online]. Available: http://www.ctx.or.kr/. [Accessed: 15-Jan-2022].
  8. Lu, Q., Rosen, J., Zhou, Y., Hutchings, G. S., Kimmel, Y. C., Chen, J. G., and Jiao, F., "A selective and efficient electrocatalyst for carbon dioxide reduction," Nat. Commun., 5(1), 3242 (2014) https://doi.org/10.1038/ncomms4242
  9. Dinh, C.-T., Burdyny, T., Kibria, M. G., Seifitokaldani, A., Gabardo, C. M., Garcia de Arquer, F. P., Kiani, A., Edwards, J. P., De Luna, P., Bushuyev, O. S., Zou, C., Quintero-Bermudez, R., Pang, Y., Sinton, D., and Sargent, E. H., "CO2 electroreduction to ethylene via hydroxide-mediated copper catalysis at an abrupt interface," Science (80-. )., vol. 360, no. 6390, 783-787 (2018) https://doi.org/10.1126/science.aas9100
  10. Roh, K., Bardow, A., Bongartz, D., Burre, J., Chung, W., Deutz, S., Han, D., Hesselmann, M., Kohlhaas, Y., Konig, A., Lee, J.S., Meys, R., Volker, S., Wessling, M., Lee, J.H., and Mitsos, A., "Early-stage evaluation of emerging CO2 utilization technologies at low technology readiness levels," Green Chem., 22(12), 3842-3859 (2020). https://doi.org/10.1039/c9gc04440j
  11. Kim, Y.E., Kim, B., Lee, W., Ko, Y.N., Youn, M.H., Jeong, S.K., Park, K.T., and Oh, J., "Highly tunable syngas production by electrocatalytic reduction of CO2 using Ag/TiO2 catalysts," Chem. Eng. J., 413, 127448 (2021) https://doi.org/10.1016/j.cej.2020.127448
  12. Lee, H.-E., Yang, K.D., Yoon, S.M., Ahn, H.-Y., Lee, Y.-S.Y., Chang, H., Jeong, D.H., Lee, Y.-S., Kim, M.Y., and Nam, K.T., "Concave Rhombic Dodecahedral Au Nanocatalyst with Multiple High-Index Facets for CO2 Reduction," ACS Nano, 9(8), 8384-8393 (2015) https://doi.org/10.1021/acsnano.5b03065
  13. Rosen, J., Hutchings, G. S., Lu, Q., Forest, R. V., Moore, A., and Jiao, F., "Electrodeposited Zn Dendrites with Enhanced CO Selectivity for Electrocatalytic CO2 Reduction," ACS Catal., 5(8), 4586-4591 (2015) https://doi.org/10.1021/acscatal.5b00922
  14. Song, J., Song, H., Kim, B., and Oh, J., "Towards Higher Rate Electrochemical CO2 Conversion: From Liquid-Phase to Gas-Phase Systems," Catalysts, 9(3), 224 (2019) https://doi.org/10.3390/catal9030224
  15. Kutz, R. B., Chen, Q., Yang, H., Sajjad, S. D., Liu, Z., and I. Masel, R., "Sustainion Imidazolium-Functionalized Polymers for Carbon Dioxide Electrolysis," Energy Technol., 5(6), 929-936 (2017) https://doi.org/10.1002/ente.201600636
  16. Lee, J., Lee, W., Ryu, K.H., Park, J., Lee, H., Lee, J.H., and Park, K.T., "Catholyte-free electroreduction of CO2 for sustainable production of CO: concept, process development, techno-economic analysis, and CO2 reduction assessment," Green Chem., 23(6), 2397-2410 (2021). https://doi.org/10.1039/D0GC02969F
  17. Lee, W., Kim, Y. E., Youn, M. H., Jeong, S. K., and Park, K. T., "Catholyte-Free Electrocatalytic CO2 Reduction to Formate," Angew. Chemie Int. Ed., 57(23), 6883-6887 (2018). https://doi.org/10.1002/anie.201803501
  18. Roh, K., Lim, H., Chung, W., Oh, J., Yoo, H., Al-Hunaidy, A.S., Imran, H., and Lee, J.H., "Sustainability analysis of CO2 capture and utilization processes using a computer-aided tool," J. CO2 Util., 26, 60-69 (2018) https://doi.org/10.1016/j.jcou.2018.04.022
  19. Muller, L. J., Katelhon, A., Bachmann, M., Zimmermann, A., Sternberg, A., and Bardow, A., "A Guideline for Life Cycle Assessment of Carbon Capture and Utilization," Front. Energy Res., 8(1), (2018)
  20. Choi, J, N., Ahn, J. J., Park, P. J., Lee, J. J., Lee, K. W., and Jang, B. W., "Techno-Economic Assessment & Life Cycle Assessment Guidelines for CO2 Utilization," Technical report, Available: https://CO2platform.krict.re.kr/lca/view/id/276#u [Assessed: 01-Jan-2022] (2019)
  21. Spath, P. L., and Mann, M. K., "Life Cycle Assessment of Renewable Hydrogen Production via Wind / Electrolysis," National Renewable Energy Laboratory, Technical report, NREL/MP-560-35404 (2004)
  22. Althaus, H., Chudacoff, M., Hischier, R., Jungbluth, N., Osses, M., Primas, A., and Hellweg, S., "Life cycle inventories of chemicals. ecoinvent report No.8, v2.0.," Final Rep. ecoinvent data, (2007).
  23. Korea power exchange, "Emission factors of the Korean power generation sector," 2021. [Online]. Available: https://www.kpx.or.kr/www/contents.do?key=222%0A. [Accessed: 21-Sep-2021].
  24. Skone, T. J., Cooney, G., Jamieson, M., Littlefield, J., and Marriott, J., "Life Cycle Greenhouse Gas Perspective on exporting liquefied natural gas from the United States," National Energy Technology Laboratory, Technical report, DOE/NETL-2014/1649 (2014)
  25. Muller, L.J., Katelhon, A., Bringezu, S., McCoy, S., Suh, S., Edwards, R., Sick, V., Kaiser, S., Cuellar-Franca, R., El Khamlichi, A., Lee, J.H., von der Assen, N., and Bardow, A., "The carbon footprint of the carbon feedstock CO2," Energy Environ. Sci., 13(9), 2979-2992 (2020). https://doi.org/10.1039/D0EE01530J
  26. Schlomer, S., Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, D., Roy, J., Schaeffer, R., Sims, R., Smith, P., and Wiser, R., "Annex III: Technology-specific cost and performance parameters," in Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA. (2014)