DOI QR코드

DOI QR Code

A Study on the Improvement Direction of Selection Evaluation Indicators for the Land Transport Technology Commercialization Support Project: Focusing on the Follow-up Project Linkage Plan

국토교통기술사업화지원사업 선정평가 지표 개선방안 연구: 후속사업 연계 방안을 중심으로

  • Received : 2022.08.31
  • Accepted : 2022.12.20
  • Published : 2022.12.28

Abstract

The Ministry of Land, Infrastructure and Transport has also been promoting the commercialization of land transport technology to commercialize the technologies owned by small and medium-sized venture companies, and to support the transfer and commercialization of public technologies. At this point, in order to improve the investment effect of subsequent new projects and to select excellent research institutes, it is necessary to establish a valid evaluation index system suitable for the purpose of the project. The evaluation index system for subsequent new projects should be linked to the project objectives and goals of the preceding project, and should be selected in consideration of existing evaluation indicators to prevent interruption of research results. Therefore, this thesis sets the evaluation index system into multiple scenarios through hierarchical cluster analysis using the evaluation result data for each evaluation committee for small and medium venture companies participating in the land transportation technology commercialization support project, and then analyzes the structural equation model. As a result of scenario analysis, considering the measurement effect of each path representing the causal relationship between evaluation indicators and the effect of each evaluation index on evaluation items, the scenario with the highest impact on the evaluation result was selected as an improvement plan.

국토교통부는 중소벤처 기업의 보유기술 및 공공기술 이전 및 사업화 지원을 위해 국토교통기술사업화지원사업을 추진하여 왔으며, 일몰제 적용에 따라 2022년부터는 후속 신규사업을 추진할 예정이다. 이러한 시점에서 후속 신규사업의 투자효과 제고 및 우수 연구기관 선정을 위해 사업목적에 맞는 타당한 평가지표 체계의 수립이 필요하다. 후속 신규사업의 평가 지표 체계는 선행사업의 사업목적 및 목표와 연계 되어야 하며, 연구성과 단절 등을 예방하기 위해 기존 평가항목 및 지표를 고려하는 것이 필요하다. 따라서 본 논문은 국토교통기술사업화지원사업 평가위원별 평가결과 데이터를 이용하여 계층적 군집분석을 통해 평가지표 체계를 다수의 시나리오로 설정하고, 구조방정식 모형 분석을 수행하였다. 시나리오 분석결과, 평가 지표 간 인과관계를 나타내는 각 경로의 측정효과와 평가항목에 미치는 평가지표별 효과를 고려하여 평가결과에 미치는 영향력이 가장 높은 시나리오를 개선방안으로 선택할 수 있었다.

Keywords

References

  1. KAIA. (2021). 2021 Land Transport Science and Technology R&D Project Implementation Plan. Anyang.
  2. KAIA. (2021). Annual Project management plan. Anyang.
  3. National R&D Innovation Act
  4. H. W. Shim. (2022), An Analysis of Influence on the Selection of R&D Project by Evaluation Index for National Land Transport R&D Project - Focusing on the Technology Commercialization Support Project -, Journal of Industrial Convergence, 20(2), 1-9. https://doi.org/10.22678/JIC.2022.20.2.001
  5. H. N. Oh, S. H. Oh, Y. S. Park & S. B. Han. (2019), A Study on the Appropriateness of the New Drug Development Evaluation Indicators, The Korean Association for Policy Development, 19(2), 41-73.
  6. J. H. Park, D. S. Lee & S. J. Lee. (2017). A Study on Development of Evaluation Indicators for Agricultural R&D Pre-economic Analysis, The Studies in Regional Development, 49(2), 81-98.
  7. W. J. Jung & J. H. Park. (2018). Apply Delphi Research Method for Development for Art Competition Fair Assessment Scale, The Korean Journal of Measurement and Evaluation in Physical Education and Sport Science, 20(2), 11-22. https://doi.org/10.21797/ksme.2018.20.2.002
  8. J. M. Choi & D. M. Lee. (2017), A Study on National R&D Project Proposal Evaluation Indicator for Small-Medium Business -Focusing on R&D Project for Support Marine SMEs-, Ocean policy research, 32(2), 169-189. https://doi.org/10.35372/kmiopr.2017.32.2.007
  9. D. H. Jang, G. M. Kang, (2014), A Study on the Improvement of a Patent Evaluation Indicator in Evaluating Government R&D Performance, The Korea Association for Policy Studies, 23(2), 65-92.
  10. B. S. Park. (2013), Improvement plan for R&D project tracking evaluation index system, The Korea Association For Policy Analysis and Evalustion, 2013(3), 115-135.
  11. S. W. Park, G. C. Lim, C. R. Choi & K. L. Kim, (2009), Hierarchical Clustering Analysis of Water Main Leak Location Data,The Korean Data & Information Science Society, 42(3), 177-190.
  12. C. Fornell. & D. F. Larker. (1981), Evaluating structural equation models with unobservable variable and measurement error, Journal of Marketing Research, 18(1), 39-50.
  13. J. Anderson & D. W. Gerbing. (1988), Structural equation modeling in practice, Psychological Bulletin, 103(3), 411-423.
  14. J. K. Lee, (2013), Scenario Selection and Uncertainty Quantification for Climate Change Impact Assessments in Water Resources, Doctor of Philosophy in Engineering Seoul National University.
  15. H. W. Byeon, (2015), The Factors of Participating in a Smoking Cessation Program using Integrated Method of Decision Tree and Neural Network Algorithm, Journal of the Korea Convergence Society, 6(2), 25-30. https://doi.org/10.15207/JKCS.2015.6.2.025
  16. H. A. Park, (2021), Reliability using Cronbach alpha in sample survey, The Korean journal of applied statistics, 34!(1), 1-8. https://doi.org/10.5351/KJAS.2021.34.1.001
  17. H. J. (2019), Amos Structural Equation, hannarae
  18. J. Heo & S. J. Ahn, (2020), Effects of Biased Awareness of Security Policies on Security Compliance Behavior, The Journal of Korean Association of Computer Education, 23(1), 63-75.
  19. Y. H. Lee. (2020), An Empirical Study on Appraisal Indices' Discrimination Significance for Technology Financing: Focusing on KOTEC's Business Feasibility Appraisal Indices, Asia-Pacific Journal of Business Venturing and Entrepreneurship, 15(5), 37-50.