DOI QR코드

DOI QR Code

Does the Agricultural Ecosystem Cause Environmental Pollution in Azerbaijan?

  • Elcin, Nesirov (Department of Finance and Economic theory, Azerbaijan State Agricultural university) ;
  • Mehman, Karimov (Department of Finance and Economic theory, Azerbaijan State Agricultural university) ;
  • Elay, Zeynalli (Department of Accounting and Audit, Azerbaijan State Agricultural university)
  • Received : 2022.08.16
  • Accepted : 2022.12.18
  • Published : 2022.12.28

Abstract

In recent years, environmental pollution and determining the main factors causing this pollution have become an important issue. This study investigates the relationship between the agricultural sector and environmental pollution in Azerbaijan for 1992-2018. The dependent variable in the study is the agricultural greenhouse gas emissions (CO2 equivalent). Eight variables were selected as explanatory variables: four agricultural inputs and four agricultural macro indicators. Unit root tests, ARDL boundary test, FMOLS, DOLS and CCR long-term estimators, Granger causality analysis, and variance decomposition analyses were used to investigate the effect of these variables on agricultural emissions. The results show that chemical fertilizer consumption, livestock number, and pesticide use positively and statistically significantly affect agricultural emissions from agricultural input variables. In contrast, agricultural energy consumption has a negative and significant effect. From agricultural macro indicator variables, it was found that the crop and animal production index had a positive and significant effect on agricultural emissions. According to the Granger causality test results, it was concluded that there are a causality relationship from chemical fertilizer consumption, livestock number, crop and livestock production index variables towards agricultural emissions. Considering all the results obtained, it is seen that the variables that have the most effect on the increase in agricultural emissions in Azerbaijan are the number of livestock, the consumption of chemical fertilizers, and the use of pesticides, respectively. The results from the research will contribute to the information on agricultural greenhouse gas emissions and will play an enlightening role for policymakers and the general public.

Keywords

References

  1. Adom, P.K., Amakye, K., Barnor, C. and Quartey, G. (2015) The long-run impact of idiosyncratic and common shocks on industry output in Ghana. OPEC Energy Review, v.39(March), p.17-52. doi: 10.1111/opec.12039
  2. Agboola, M.O. and Bekun, F.V. (2019) Does agricultural value-added induce environmental degradation? Empirical evidence from an agrarian country. Environmental Science and Pollution Research, v.26, p.27660-27676. https://doi.org/10.1007/s11356-019-05943-z
  3. Ali, E.B. and Anufriev, V.P. (2020) The causal relationship between agricultural production, economic growth, and energy consumption in Ghana. R-Economy, v.6(4), p.231-241. doi: 10.15826/recon.2020.6.4.020
  4. Ali, B., Ullah, A. and Khan, D. (2021) Does the prevailing Indian agricultural ecosystem cause carbon dioxide emission? A consent towards risk reduction. Environmental Science and Pollution Research, v.28(4), p.4691-4703. doi: s11356-020-10848-3 s11356-020-10848-3
  5. Altan, T., Kanber, R., Ozbek, H. and Sekeroglu, E. (2000) Tarim ve Cevre. Ozgurluk Dunyasi Dergisi, Sayi:102.
  6. Appiah, K., Du, J. and Poku, J. (2018) Causal relationship between agricultural production and carbon dioxide emissions in selected emerging economies. Environmental Science and Pollution Research, v.25(25), p.24764-24777. doi: 10.1007/s11356-018-2523-z
  7. Ayyildiz, M. and Erdal, G. (2021) The relationship between carbon dioxide emission and crop and livestock production indexes: a dynamic common correlated effects approach. Environmental Science and Pollution Research, v.28(1), p.597-610. doi: s11356-020-10409-8 s11356-020-10409-8
  8. Balogh, J.M. (2019) Agriculture-specific determinants of carbon footprint. Studies in Agricultural Economics, v.121(3), p.166-170. doi: 10.7896/j.1918
  9. Balogh, J.M. (2020) The role of agriculture in climate change: A global perspective. International Journal of Energy Economics and Policy, v.10(2), 401. doi: 10.32479/ijeep.8859
  10. Ben Jebli M and Ben Youssef S. (2017) The role of renewable energy and agriculture in reducing CO2 emissions: evidence for North Africa countries. Ecol. Indic., v.74, p.295-301. https://doi:10.1016/j.ecolind.2016.11.032.
  11. Chandio, A.A., Akram, W., Ahmad, F. and Ahmad, M. (2020) Dynamic relationship among agriculture-energy-forestry and carbon dioxide (CO2) emissions: empirical evidence from China. Environmental Science and Pollution Research, v.27(27), p.34078-34089. doi: 10.1007/s11356-020-09560-z
  12. Dickey, D.A. and Fuller, W.A. (1979) Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, v.74(366), p.427-431. doi: 10.1080/01621459.1979.10482531
  13. Dickey, D.A. and Fuller, W.A. (1981) Likelihood ratio statistics for autoregressive time series with a unit root. Econometrica: Econometric Soc., p.1057-1072. doi: 10.2307/1912517
  14. Drabo, A. (2011) Agricultural primary commodity export and environmental degradation: what consequences for population's health?. Clermont-Ferrand, France: Center for Study and Research on International Development (CERDI).
  15. Elliott, G., Rothenberg, T.J. and Stock, J. (1996) Efficient tests for an autoregressive unit root. Econometrica, v.64(4), p.813-836. doi: 10.2307/2171846
  16. Engle, R.F. and Granger, C.W.J. (1987) Cointegration and error correction: Representation, estimation and testing. Econometrica, v.55, p.251-276. doi: 10.2307/1913236
  17. Fuller, W.A. (1976) Introduction to Statistical Time Series. New York: Wiley
  18. Granger, C.W. (1969) Investigating causal relations by econometric models and cross-spectral methods. Econometrica, v.37, p.424-438. doi: 10.2307/1912791
  19. Granger, C.W. and Newbold, P. (1974) Spurious regressions in econometrics. J. Econom., v.2(2), p.111-120. doi: 10.1016/0304-4076(74)90034-7
  20. Gujarati, D.N. and Porter, D.C. (2009) Basic Econometrics, New York: McGraw-Hill
  21. Gurbuz, I.B., Nesirov, E. and Ozkan, G. (2021) Does agricultural value-added induce environmental degradation? Evidence from Azerbaijan. Environmental Science and Pollution Research, v.28(18), p.23099-23112. doi: 10.1007/s11356-020-12228-3
  22. Hongdou, L., Shiping, L. and Hao, L. (2018) Existing agricultural ecosystem in China leads to environmental pollution: an econometric approach. Environmental Science and Pollution Research, v.25(24), p.24488-24499. doi: 10.1007/s11356-018-2461-9
  23. Ismael, M., Srouji, F. and Boutabba, M.A. (2018) Agricultural technologies and carbon emissions: evidence from Jordanian economy. Environmental Science and Pollution Research, v.25(11), p.10867-10877. doi: s11356-018-1327-5 https://doi.org/10.1007/s11356-018-1327-5
  24. Johansen, S. (1988) Statistical analysis of cointegration vectors. JEDC, v.12(2-3), p.231-254. doi: 10.1016/0165-1889(88)90041-3
  25. Johansen, S. and Juselius, K. (1990) Maximum likelihood estimation and inference on cointegration with applications to the demand for money. Oxford B Econ. Stat., v.52(2), p.169-210. https://doi.org/10.1111/j.1468-0084.1990.mp52002003.x
  26. Koshta, N., Bashir, H.A. and Samad, T.A. (2020) Foreign trade, financial development, agriculture, energy consumption and CO2 emission: testing EKC among emerging economies. Indian Growth and Development Review, v.14(1), p.50-80. doi: 10.1108/IGDR-10-2019-0117
  27. Kucukaksoy, I., Cifci, I. and Ozbek, R.I. (2015) Export-led Growth Hypothesis: Turkey Application. Cankiri Karatekin University Journal of The Faculty of Economics and Administrative Sciences, v.5(2), p.691-720.
  28. Leitao, N.C. and Balogh, J.M. (2020) The impact of energy consumption and agricultural production on carbon dioxide emissions in Portugal. AGRIS on-line Papers in Economics and Informatics, v.12(1), p.49-59. doi: 10.7160/aol.2020.120105
  29. Liebig, M.A., Franzluebbers, A.J. and Follett, R.F. (2012) Agriculture and climate change: Mitigation opportunities and adaptation imperatives. Acedemic Press, San Diego, CA, 3-11.
  30. Liu, X., Zhang, S. and Bae, J. (2017a) The impact of renewable energy and agriculture on carbon dioxide emissions: Investigating the environmental Kuznets curve in four selected ASEAN countries. J. Cleaner Prod., v.164, p.1239-1247. https://doi.org/10.1016/j.jclepro.2017.07.086
  31. Narayan, S. and Narayan, P.K. (2004) Determinants of demand for Fiji's exports: An empirical investigation. Dev. Econ., v.42(1), p.95-112. https://doi.org/10.1111/j.1746-1049.2004.tb01017.x
  32. Narayan, P.K. (2005) The saving and investment nexus for China: evidence from cointegration tests. Appl. Econ., v.37(17), p.1979-1990. https://doi.org/10.1080/00036840500278103
  33. Nazlioglu, S. (2010) Makro iktisat politikalarinin tarim sektoru uzerindeki etkileri: Gelismis ve gelismekte olan ulkeler icin bir karsilastirma. Doktora Tezi. Kayseri: Erciyes universitesi.
  34. Park, J.Y. (1992) Canonical cointegrating regressions. Econometrica: Journal of the Econometric Society, v.60(1), p.119-143. doi: 10.2307/2951679
  35. Pedroni, P. (2000) Fully-Modified OLS for heterogeneous cointegrated panels. Advances in Econometrics, v.15, p.93-130. doi: 10.1016/S0731-9053(00)15004-2
  36. Pedroni, P. (2001) Purchasing Power Parity Tests in Cointegrated Panels. Review of Economics and Statistics, v.83, p.727-731. doi: 10.1162/003465301753237803
  37. Pesaran, M.H. and Smith, R.P. (1998) Structural analysis of cointegrating VARs. J. Econ. Survey, v.12, p.471-505. https://doi.org/10.1111/1467-6419.00065
  38. Pesaran, M.H. and Shin, Y. (1999) An autoregressive distributed lag modeling approach to cointegration analysis, In: Strom, S., Holly, A., Diamond, P. (Eds.), Centennial Volume of Rangar Frisch, Cambridge University Press, Cambridge.
  39. Pesaran, M.H., Shin, Y. and Smith, R.J. (2001) Bounds testing approaches to the analysis of level relationships. J. Appl. Econom., v.16, p.289-326. doi: 10.1002/jae.616
  40. Phillips, P. and Perron, P. (1988) Testing for a unit root in time series regression. Biometrika, v.75(2), p.335-346. doi: 10.1093/biomet/75.2.335
  41. Phillips, P.C. and Hansen, B.E. (1990) Statistical inference in instrumental variables regression with I (1) processes. The Review of Economic Studies, v.57(1), p.99-125. doi: 10.2307/2297545
  42. Ramachandra, T.V., Aithal, B.H. and Sreejith, K. (2015) GHG footprint of major cities in India. Renew. Sust. Energ. Rev., v.44, p.473-495. https://doi.org/10.1016/j.rser.2014.12.036
  43. Rehman, A., Ozturk, I. and Zhang, D. (2019) The causal connection between CO2 emissions and agricultural productivity in Pakistan: empirical evidence from an autoregressive distributed lag bounds testing approach. Applied Sciences, v.9(8), 1692. doi: 10.3390/app9081692
  44. Ronaghi, M., Saghaian, S., Reed, M. and Mohammadi, H. (2018) The impact of the agricultural sector in developing countries that produce natural gas on greenhouse gas emissions. International Journal of Food and Agricultural Economics (IJFAEC), 6(1128-2019-555), p.53-69. doi: 10.22004/ag.econ.283874
  45. Sarkodie, S.A. and Owusu, P.A. (2017) The relationship between carbon dioxide, crop and food production index in Ghana: By estimating the long-run elasticities and variance decomposition. Environmental Engineering Research, v.22(2), p.193-202. doi: 10.4491/eer.2016.135
  46. Signor, D. and Cerri, C.E.P. (2013) Nitrous oxide emissions in agricultural soils: a review. Pesquisa Agropecuaria Tropical, v.43(3), p.322-338. doi: 10.1590/S1983-40632013000300014
  47. Tang, T.C. (2003) Japanese aggregate import demand function: Reassessment from the bounds testing approach. Jpn. World Econ., v.15, p.419-436. https://doi.org/10.1016/S0922-1425(02)00051-8
  48. Ullah, A., Khan, D., Khan, I. and Zheng, S. (2018) Does agricultural ecosystem cause environmental pollution in Pakistan? Promise and menace. Environmental Science and Pollution Research, v.25, p.13938-13955. https://doi.org/10.1007/s11356-018-1530-4
  49. Zivot, E. and Andrews, D.W.K. (1992) Further evidence on the great crash, the oil-price. J. Bus. Econ. Stat., v.10(3), p.251-270. doi: 10.2307/1391541