과제정보
이 논문은 2022년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연구사업임(No. 2021R1I1A3060354).
참고문헌
- Alam, M.S., and Elshorbagy, A. (2015). "Quantification of the climate change-induced variations in Intensity - Duration - Frequency curves in the Canadian Prairies." Journal of Hydrology, Elsevier, Vol. 527, pp. 990-1005. https://doi.org/10.1016/j.jhydrol.2015.05.059
- Bandaru, S., Sano, S., Shimizu, Y., Seki, Y., Okano, Y., Sasaki, T., Wada, H., Otsuki, T., and Ito, T. (2020). "Impact of heavy rains of 2018 in western Japan: disaster-induced health outcomes among the population of Innoshima Island." Heliyon, Elsevier, Vol. 6, No. 5, e03942. https://doi.org/10.1016/j.heliyon.2020.e03942
- Ben Alaya, M.A., Zwiers, F., and Zhang, X. (2018). "Probable maximum precipitation: Its estimation and uncertainty quantification using bivariate extreme value analysis." Journal of Hydrometeorology, Vol. 19, No. 4, pp. 679-694. https://doi.org/10.1175/JHM-D-17-0110.1
- Bobee, B., Cavadias, G., Ashkar, F., Bernier, J., and Rasmussen, P. (1993). "Towards a systematic approach to comparing distributions used in flood frequency analysis." Journal of Hydrology, Elsevier Vol. 142, No. 1-4, pp. 121-136. https://doi.org/10.1016/0022-1694(93)90008-W
- Christidis, N., Jones, G.S., and Stott, P.A. (2015). "Dramatically increasing chance of extremely hot summers since the 2003 European heatwave." Nature Climate Change, Vol. 5, No. 1, pp. 46-50. https://doi.org/10.1038/nclimate2468
- Cunnane, C. (1989). Statistical distributions for flood frequency analysis. Operational Hydrological Report. No. 33, Word Meteorological Organization, Geneva, Switzerland.
- Doll, P., Trautmann, T., Gerten, D., Schmied, H.M., Ostberg, S., Saaed, F., and Schleussner, C.F. (2018). "Risks for the global freshwater system at 1.5℃ and 2℃ global warming." Environmental Research Letters, IOP Publishing, Vol. 13, No. 4, pp. 1-15.
- Duan, W., Hanasaki, N., Shiogama, H., Chen, Y., Zou, S., Nover, D., Zhou, B., and Wang, Y. (2019). "Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations." Journal of Climate, Vol. 32, No. 8, pp. 2169-2183. https://doi.org/10.1175/JCLI-D-18-0465.1
- Faye. B, Webber, H., Naab, J.B., MacCarthy, D.S., Adam, M., Ewert, F., Lamers, J.P.A., Schleussner, C.F., Ruane, A., Gessner, U., Hoogenboom, G., Boote, K., Shelia, V., Saeed, F., Wisser, D., Hadir, S., Laux, P., and Gaiser, T. (2018). "Impacts of 1.5 versus 2.0℃ on cereal yields in the West African Sudan Savanna." Environmental Research Letters, IOP Publishing, Vol. 13, No. 3, pp. 1-13.
- Felix, M.L., Kim, Y., Choi, M., Kim, J.-C., Do, X.K., Nguyen, T. H., and Jung, K. (2021). "Detailed trend analysis of extreme climate indices in the upper Geum River Basin." Water, MDPI, Vol. 13, No. 22, 3171. https://doi.org/10.3390/w13223171
- Fischer, E.M., and Knutti, R. (2015). "Anthropogenic contribution to global occurrence of heavy-precipitation and high-temperature extremes." Nature Climate Change, Vol. 5, No. 6, pp. 560-564. https://doi.org/10.1038/nclimate2617
- Gumbel, E.J. (1958). Statics of extremes. Columbia University Press, New York, N.Y., U.S.
- Haddad, K., and Rahman, A. (2011). "Selection of the best fit flood frequency distribution and parameter estimation procedure: A case study for Tasmania in Australia." Stochastic Environmental Research and Risk Assessment, Springer, Vol. 25, No. 3, pp. 415-428. https://doi.org/10.1007/s00477-010-0412-1
- Haddad, K., Johnson, F., Rahman, A., Green, J., and Kuczera, G. (2015). "Comparing three methods to form regions for design rainfall statistics: two case studies in Australia." Journal of Hydrology, Elsevier, Vol. 527, pp. 62-76. https://doi.org/10.1016/j.jhydrol.2015.04.043
- Hanittinan, P., Tachikawa, Y., and Ram-Indra, T. (2020). "Projection of hydroclimate extreme indices over the indochina region under climate change using a large single-model ensemble." International Journal of Climatology, RMetS, Vol. 40, No. 6, pp. 2924-2952. https://doi.org/10.1002/joc.6374
- Hirota, K., Konagai, K., Sassa, K., Dang, K., Yoshinaga, Y., and Wakita, E.K. (2019). "Landslides triggered by the West Japan Heavy Rain of July 2018, and geological and geomorphological features of soaked mountain slopes." Landslides, Springer, Vol. 16, pp. 189-194. https://doi.org/10.1007/s10346-018-1100-3
- Hwang, J., Ahn, J., Jeong, C., and Heo, J.-H. (2018). "A study on the variation of design flood due to climate change in the ungauged urban catchment." Journal of Korea Water Resources Association, KWRA, Vol. 51, No. 5, pp. 395-404. https://doi.org/10.3741/JKWRA.2018.51.5.395
- Ishii, M., and Mori, N. (2020). "d4PDF: Large-ensemble and highresolution climate simulations for global warming risk assessment." Progress in Earth and Planetary Science, Springer, Vol. 7, No. 1, pp. 1-22. https://doi.org/10.1186/s40645-019-0311-0
- Ji, Z., and Kang, S. (2015). "Evaluation of extreme climate events using a regional climate model for China." International Journal of Climatology, Vol. 35, pp. 888-902. https://doi.org/10.1002/joc.4024
- Johnson, F., Haddad, K., Rahman, A., and Green, J. (2012). "Application of Bayesian GLSR to estimate sub daily rainfall parameters for the IFD revision project." Hydrology and Water Resources Symposium 2012, EA, Australia, p. 800.
- Kay, J.E., Deser, C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J.M., Bates, S.C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque, J.F., Lawrence, D., Lindsay, K. Middleton, A., Munoz, E., Neale, R., Oleson, K., Polvani, L., and Vertenstein, M. (2015). "The community earth system model (CESM) large ensemble project: A community resource for studying climate change in the presence of internal climate variability." Bulletin of the American Meteorological Society, AMS, Vol. 96, No. 8, pp. 1333-1349. https://doi.org/10.1175/BAMS-D-13-00255.1
- Kendall, M.G. (1975). Rank correlation methods (4th edn.) charles griffin. Griffin, London, UK.
- Klemes, V. (1986). "Dilettantism in hydrology: Transition or destiny?" Water Resources Research, WOL, Vol. 22, No. 9S, pp. 177S-188S.
- Klemes, V. (1987). "Hydrological and engineering relevance of flood frequency analysis." Hydrologic Frequency Modeling, Springer, pp. 1-18.
- Klemes, V. (2000). "Tall tales about tails of hydrological distributions. I." Journal of Hydrologic Engineering, Vol. 5, No. 3, pp. 227-231. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:3(227)
- Kumar, N., Poonia, V., Gupta, B.B., and Goyal, M.K. (2021). "A novel framework for risk assessment and resilience of critical infrastructure towards climate change." Technological Forecasting and Social Change, Elsevier, Vol. 165, 120532. https://doi.org/10.1016/j.techfore.2020.120532
- Lavender, S.L., E Walsh, K.J., Caron, L.-P., King, M., Monkiewicz, S., Guishard, M., Zhang, Q., and Hunt, B. (2018). "Estimation of the maximum annual number of North Atlantic tropical cyclones using climate models." Science Advances, Vol. 4, No. 8, eaat6509. https://doi.org/10.1126/sciadv.aat6509
- Li, S., Mote, P. W., Rupp, D. E., Vickers, D., Mera, R., and Allen, M. (2015). "Evaluation of a regional climate modeling effort for the western United States using a superensemble from weather @home." Journal of Climate, Vo. 28, pp. 7470-7488. https://doi.org/10.1175/JCLI-D-14-00808.1
- Mann, H.B. (1945). "Nonparametric tests against trend." Econometrica, Vol. 13, No. 3, pp. 245-259. https://doi.org/10.2307/1907187
- Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., Arakawa, O., Imada, Y., Yoshida, K., Aoyagi, T., Kawase, H., Mori, M., Okada, Y., Shimura, T., Nagatomo, T., Ikeda, M., Endo, H., Masaya, N., Arai, M., Takahashi, C., Tanaka, K., Takemi, T., Tachikawa, Y., Temur, K., Kamae, Y., Watanabe, M., Sasaki, H., Kitoh, A., Takayabu, I., Nakakita, E., and Kimoto, M. (2017). "Over 5,000 years of ensemble future climate simulations by 60-km global and 20-km regional atmospheric models." Bulletin of the American Meteorological Society, AMS, Vol. 98, No. 7, pp. 1383-1398.
- Mori, N., Shimura, T., Yoshida, K., Mizuta, R., Okada, Y., Fujita, M., Khujanazarov, T., and Nakakita, E. (2019). "Future changes in extreme storm surges based on mega-ensemble projection using 60-km resolution atmospheric global circulation model." Coastal Engineering Journal, T&F, Vol. 61, No. 3, pp. 295-307. https://doi.org/10.1080/21664250.2019.1586290
- Mote, P.W., Allen, M.R., Jones, R.G., Li, S., Mera, R., Rupp, D.E., Salahuddin, A., and Vickers, D. (2016). "Superensemble regional climate modeling for the western United States." Bulletin of the American Meteorological Society, Vol. 97, pp. 203-215. https://doi.org/10.1175/BAMS-D-14-00090.1
- Sasaki, H., Kurihara, K., Takayabu, I., and Uchiyama, T. (2008). "Preliminary experiments of reproducing the present climate using the non-hydrostatic regional climate model." Sola, MSJ, Vol. 4, pp. 25-28. https://doi.org/10.2151/sola.2008-007
- Seneviratne, S., Nicholls, N., Easterling, D., Goodess, C., Kanae, S., Kossin, J., Luo, Y., Marengo, J., McInnes, K., and Rahimi, M. (2012). Changes in climate extremes and their impacts on the natural physical environment. Cambridge University Press, Cambridge, UK.
- Sharma, M.A., and Singh, J.B. (2010). "Use of probability distribution in rainfall analysis." New York Science Journal, Vol. 3, No. 9, pp. 40-49.
- Shimpo, A., Takemura, K., Wakamatsu, S., Togawa, H., Mochizuki, Y., Takekawa, M., Tanaka, S., Yamashita, K., Maeda, S., and Kurora, R. (2019). "Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan." Sola, MSJ, Vol. 15A, pp. 13-18. https://doi.org/10.2151/sola.15A-003
- Smith, L.C. (2000). "Trends in Russian Arctic river-ice formation and breakup, 1917 to 1994." Physical Geography, Vol. 21, No. 1, pp. 46-56. https://doi.org/10.1080/02723646.2000.10642698
- Tanaka, T., Kiyohara, K., and Tachikawa, Y. (2020). "Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya, Japan." Journal of Hydrology, Elsevier, Vol. 584, No. February, 124706. https://doi.org/10.1016/j.jhydrol.2020.124706
- Tanaka, T., Kobayashi, K., and Tachikawa, Y. (2021). "Simultaneous flood risk analysis and its future change among all the 109 class-A river basins in Japan using a large ensemble climate simulation database d4PDF." Environmental Research Letters, IOP Publishing, Vol. 16, No. 7, 74059. https://doi.org/10.1088/1748-9326/abfb2b
- Tanaka, T., Tachikawa, Y., Ichikawa, Y., and Yorozu, K. (2018). "Flood risk curve development with probabilistic rainfall modelling and large ensemble climate simulation data: A case study for the Yodo river basin." Hydrological Research Letters, Vol. 12, No. 4, pp. 28-33. https://doi.org/10.3178/hrl.12.28
- Tang, J., Niu, X., Wang, S., Gao, H., Wang, X., and Wu, J. (2016). "Statistical downscaling and dynamical downscaling of regional climate in China: Present climate evaluations and future climate projections." Journal of Geophysical Research, Vol. 121, pp. 2110-2129.
- Yang, J.A., Kim, S., Mori, N., and Mase, H. (2018). "Assessment of long-term impact of storm surges around the Korean Peninsula based on a large ensemble of climate projections." Coastal Engineering, Elsevier, Vol. 142, pp. 1-8. https://doi.org/10.1016/j.coastaleng.2018.09.008
- Zhang, Y., Xu, Y., Dong, W., Cao, L., and Sparrow, M. (2006). "A future climate scenario of regional changes in extreme climate events over China using the PRECIS climate model." Geophysical Research Letter, Vol. 33, L24702. https://doi.org/10.1029/2006GL027229