DOI QR코드

DOI QR Code

Deep Learning based Time Offset Estimation in GPS Time Transfer Measurement Data

GPS 시각전송 측정데이터에 대한 딥러닝 모델 기반 시각오프셋 예측

  • Yu, Dong-Hui (Department of Software, Catholic University of Pusan) ;
  • Kim, Min-Ho (Department of Software, Catholic University of Pusan)
  • Received : 2021.01.08
  • Accepted : 2021.10.09
  • Published : 2022.03.31

Abstract

In this paper, we introduce a method of predicting time offset by applying LSTM, a deep learning model, to a precision time comparison technique based on measurement data extracted from code signals transmitted from GPS satellites to determine Universal Coordinated Time (UTC). First, we introduce a process of extracting time information from code signals received from a GPS satellite on a daily basis and constructing a daily time offset into one time series data. To apply the deep learning model to the constructed time offset time series data, LSTM, one of the recurrent neural networks, was applied to predict the time offset of a GPS satellite. Through this study, the possibility of time offset prediction by applying deep learning in the field of GNSS precise time transfer was confirmed.

본 논문에서는 세계협정시(UTC)를 결정하기 위해 GPS 위성에서 전송된 코드 신호에서 추출한 측정 데이터를 기반으로 한 정밀시각비교 기법에 딥러닝 모델인 LSTM을 적용하여 시각 오프셋을 예측하는 방법을 소개한다. 이를 위해 우선, 하루 단위로 GPS 위성으로부터 수신된 코드 신호에서 시각 정보를 추출하고 하루 단위의 시각 오프셋을 하나의 시계열 데이터로 구축하는 과정을 소개한다. 구축된 시각 오프셋 시계열 데이터에 대해 딥러닝 모델을 적용하는데, 순환신경망 중 하나인 LSTM을 적용하여 GPS의 시각 오프셋 예측을 수행하였다. 본 연구를 통해 GNSS 기반 정밀 시각비교분야에서 딥러닝을 적용한 시각 오프셋 예측의 가능성을 확인하였다.

Keywords

References

  1. Y. K. Lee, S. H. Yang, H. S. Lee, J. K. Lee, and S. W. Hwang, "Outlier Detection Method for Time Synchronization," Journal of Positioning, Navigation, and Timing, vol. 9, no. 4, pp. 397-403, Dec. 2020. https://doi.org/10.11003/jpnt.2020.9.4.397
  2. W. Fang, J. Jiang, S. Lu, Y. Gong, Y. Tao, Y. Tang, P. Yan, H. Luo, and J. Liu, "A LSTM Algorithm Estimating Pseudo Measurements for Aiding INS during GNSS Signal Outrages," Remote Sensing, vol. 12, iss. 2, 2020.
  3. D. W. Allan and C. Thomas, "Technical Directives for Standardization of GPS Time Receiver Software," Metrologia, vol. 31, no. 1, 1994.
  4. G. M. Lee, Artificial Intelligence, SangNeung Pub., pp. 317-334, 2019.
  5. G. M. Lee, Artificial Ingelligence, Sangneung Pub, ch. 5, pp. 254-385, 2019.
  6. Y. W. Lu, C. Y. Hsu, and K. C. Huang, "An autoencoder Gated Recurrent Unit for Remaining Useful Life Prediction," Processes, vol. 8, iss.9, 2020.
  7. J. Azoubib and W. Lewandowski, "CGGTTS GPS/GLONASS Data format version 02," 7th CGGTTS meeting, Nov. 1998.
  8. G. Petit and E. F. Arias, "Use of IGS products in TAI applications," Journal of Geodesy, vol. 83, no. 3-4, pp. 327-334, Mar. 2009. https://doi.org/10.1007/s00190-008-0240-y