DOI QR코드

DOI QR Code

Identification, Characterization, and Efficacy Evaluation of Bacillus velezensis for Shot-Hole Disease Biocontrol in Flowering Cherry

  • Han, Viet-Cuong (Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University) ;
  • Yu, Nan Hee (Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University) ;
  • Yoon, Hyeokjun (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Ahn, Neung-Ho (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Son, Youn Kyoung (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Lee, Byoung-Hee (Biological and Genetic Resources Assessment Division, National Institute of Biological Resources) ;
  • Kim, Jin-Cheol (Department of Agricultural Chemistry, Institute of Environmentally-Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University)
  • Received : 2022.01.06
  • Accepted : 2022.02.08
  • Published : 2022.04.01

Abstract

Though information exists regarding the pathogenesis of the shot-hole disease (SH) in flowering cherry (FC), there has been a lack of research focusing on SH management. Therefore, here, we investigated the inhibitory activities of antagonistic bacteria against SH pathogens both in vitro and in vivo as well as their biochemical characteristics and bioactive compounds. Two biosurfactant-producing bacterial antagonists, identified as Bacillus velezensis strains JCK-1618 and JCK-1696, exhibited the best effects against the growth of both bacterial and fungal SH pathogens in vitro through their cell-free culture filtrates (CFCFs). These two strains also strongly inhibited the growth of the pathogens via the action of their antimicrobial diffusible compounds and antimicrobial volatile organic compounds (VOCs). Crude enzymes, solvent extracts, and biosurfactants of the two strains exhibited antimicrobial activities. Liquid chromatography/electrospray ionization time-of-flight mass spectrometric analysis of the partially purified active fractions revealed that the two antagonists produced three cyclic lipopeptides, including iturin A, fengycin A, and surfactin, and a polyketide, oxydifficidin. In a detached leaf assay, pre-treatment and co-treatment of FC leaves with the CFCFs led to a large reduction in the severity of the leaf spots caused by Epicoccum tobaicum and Bukholderia contaminans, respectively. In addition, the two antagonists produced indole-3-acetic acid, siderophore, and a series of hydrolytic enzymes, along with the formation of a substantial biofilm. To our knowledge, this is the first report of the antimicrobial activities of the diffusible compounds and VOCs of B. velezensis against the SH pathogens and their efficiency in the biocontrol of SH.

Keywords

Acknowledgement

We thank Prof. In-Seon Kim (Pesticide Science Lab., Department of Agricultural Chemistry, Chonnam National University) for GC-MS technical assistance. This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of South Korea (grant number: NIBR202018201).

References

  1. Bais, H. P., Fall, R. and Vivanco, J. M. 2004. Biocontrol of Bacillus subtilis against infection of Arabidopsis roots by Pseudomonas syringae is facilitated by biofilm formation and surfactin production. Plant Physiol. 134:307-319. https://doi.org/10.1104/pp.103.028712
  2. Bie, X., Lu, Z. and Lu, F. 2009. Identification of fengycin homologues from Bacillus subtilis with ESI-MS/CID. J. Microbiol. Methods 79:272-278. https://doi.org/10.1016/j.mimet.2009.09.013
  3. Cao, Y., Pi, H., Chandrangsu, P., Li, Y., Wang, Y., Zhou, H., Xiong, H., Helmann, J. D. and Cai, Y. 2018. Antagonism of two plant-growth promoting Bacillus velezensis isolates against Ralstonia solanacearum and Fusarium oxysporum. Sci. Rep. 8:4360. https://doi.org/10.1038/s41598-018-22782-z
  4. Chaves-Lopez, C., Serio, A., Gianotti, A., Sacchetti, G., Ndagijimana, M., Ciccarone, C., Stellarini, A., Corsetti, A. and Paparella, A. 2015. Diversity of food-borne Bacillus volatile compounds and influence on fungal growth. J. Appl. Microbiol. 119:487-499. https://doi.org/10.1111/jam.12847
  5. Chen, X.-H., Koumoutsi, A., Scholz, R. and Borriss, R. 2009. More than anticipated - production of antibiotics and other secondary metabolites by Bacillus amyloliquefaciens FZB42. J. Mol. Microbiol. Biotechnol. 16:14-24. https://doi.org/10.1159/000142891
  6. Chun, J. and Bae, K.S. 2000. Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78:123-127. https://doi.org/10.1023/a:1026555830014
  7. Compant, S., Duffy, B., Nowak, J., Clement, C. and Barka, E. A. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71:4951-4959. https://doi.org/10.1128/AEM.71.9.4951-4959.2005
  8. De Souza, J. T., De Boer, M., De Waard, P., Van Beek, T. A. and Raaijmakers, J. M. 2003. Biochemical, genetic, and zoosporicidal properties of cyclic lipopeptide surfactants produced by Pseudomonas fluorescens. Appl. Environ. Microbiol. 69:7161-7172. https://doi.org/10.1128/AEM.69.12.7161-7172.2003
  9. Diaz, R., Zas, R. and Fernandez-Lopez, J. 2007. Genetic variation of Prunus avium in susceptibility to cherry leaf spot (Blumeriella jaapii) in spatially heterogeneous infected seed orchards. Ann. For. Sci. 64:21-30. https://doi.org/10.1051/forest:2006084
  10. Dunlap, C. A., Kim, S. J., Kwon, S. W. and Rooney, A. P. 2016. Bacillus velezensis is not a later heterotypic synonym of Bacillus amyloliquefaciens; Bacillus methylotrophicus, Bacillus amyloliquefaciens subsp. plantarum and 'Bacillus oryzicola' are later heterotypic synonyms of Bacillus velezensis based on phylogenomics. Int. J. Syst. Evol. Microbiol. 66:1212-1217. https://doi.org/10.1099/ijsem.0.000858
  11. Elad, Y. and Baker, R. 1985. Influence of trace amounts of cations and siderophore-producing pseudomonads on chlamydospore germination of Fusarium oxysporum. Phytopathology 75:1047-1052. https://doi.org/10.1094/Phyto-75-1047
  12. Fan, B., Blom, J., Klenk, H.-P. and Borriss, R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamen sis form an "operational group B. amyloliquefaciens" within the B. subtilis species complex. Front. Microbiol. 8:22.
  13. Faveri, M., Mayer, M. P. A., Feres, M., de Figueiredo, L. C., Dewhirst, F. E. and Paster, B. J. 2008. Microbiological diversity of generalized aggressive periodontitis by 16S rRNA clonal analysis. Oral Microbiol. Immunol. 23:112-118. https://doi.org/10.1111/j.1399-302X.2007.00397.x
  14. Fernando, W. G. D., Ramarathnam, R., Krishnamoorthy, A. S. and Savchuk, S. C. 2005. Identification and use of potential bacterial organic antifungal volatiles in biocontrol. Soil Biol. Biochem. 37:955-964. https://doi.org/10.1016/j.soilbio.2004.10.021
  15. Flores, A., Chet, I. and Herrera-Estrella, A. 1997. Improved biocontrol activity of Trichoderma harzianum by over-expression of the proteinase-encoding gene prb1. Curr. Genet. 31:30-37. https://doi.org/10.1007/s002940050173
  16. Gao, X.-A., Ju, W.-T., Jung, W.-J. and Park, R.-D. 2008. Purification and characterization of chitosanase from Bacillus cereus D-11. Carbohydr. Polym. 72:513-520. https://doi.org/10.1016/j.carbpol.2007.09.025
  17. Gordon, S. A. and Weber, R. P. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol. 26:192-195. https://doi.org/10.1104/pp.26.1.192
  18. Gruber, B. R., Kruger, E. L. and McManus, P. S. 2012. Effects of cherry leaf spot on photosynthesis in tart cherry 'Montmorency' foliage. Phytopathology 102:656-661. https://doi.org/10.1094/PHYTO-12-11-0334
  19. Gudina, E. J., Rocha, V., Teixeira, J. A. and Rodrigues, L. R. 2010. Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett. Appl. Microbiol. 50:419-424. https://doi.org/10.1111/j.1472-765X.2010.02818.x
  20. Hall-Stoodley, L., Costerton, J. W. and Stoodley, P. 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:95-108. https://doi.org/10.1038/nrmicro821
  21. Han, V.-C., Yu, N. H., Park A. E., Yoon, H., Son, Y. K., Lee, B.-H. and Kim, J.-C. 2021a. First report of shot-hole on flowering cherry caused by Burkholderia contaminans and Pseudomonas syringae pv. syringae. Plant Dis. 105:3795-3802. https://doi.org/10.1094/PDIS-03-21-0547-SC
  22. Han, V.-C., Yu, N. H., Yoon, H., Son, Y. K., Lee, B.-H. and Kim, J.-C. 2021b. First report of Epicoccum tobaicum associated with leaf spot on flowering cherry in South Korea. Plant Dis. 105:2734.
  23. Hulin, M. T., Mansfield, J. W., Brain, P., Xu, X., Jackson, R. W. and Harrison, R. J. 2018. Characterization of the pathogenicity of strains of Pseudomonas syringae towards cherry and plum. Plant Pathol. 67:1177-1193. https://doi.org/10.1111/ppa.12834
  24. Idris, E. E., Iglesias, D. J., Talon, M. and Borriss, R. 2007. Tryptophan-dependent production of indole-3-acetic acid (IAA) affects level of plant growth promotion by Bacillus amyloliquefaciens FZB42. Mol. Plant-Microbe Interact. 20:619-626. https://doi.org/10.1094/mpmi-20-6-0619
  25. Im, S. M., Yu, N. H., Joen, H. W., Kim, S. O., Park, H. W., Park, A. R. and Kim, J.-C. 2020. Biological control of tomato bacterial wilt by oxydifficidin and difficidin-producing Bacillus methylotrophicus DR-08. Pestic. Biochem. Physiol. 163:130-137. https://doi.org/10.1016/j.pestbp.2019.11.007
  26. Kim, K., Lee, Y., Ha, A., Kim, J.-I., Park, A. R., Yu, N. H., Son, H., Choi, G. J., Park, H. W., Lee, C. W., Lee, T., Lee, Y.-W. and Kim, J.-C. 2017. Chemosensitization of Fusarium graminearum to chemical fungicides using cyclic lipopeptides produced by Bacillus amyloliquefaciens strain JCK-12. Front. Plant Sci. 8:2010. https://doi.org/10.3389/fpls.2017.02010
  27. Kruijt, M., Tran, H. and Raaijmakers, J. M. 2009. Functional, genetic and chemical characterization of biosurfactants produced by plant growth-promoting Pseudomonas putida 267. J. Appl. Microbiol. 107:546-556. https://doi.org/10.1111/j.1365-2672.2009.04244.x
  28. Kumar, S., Stecher, G., Li, M., Knyaz, C. and Tamura, K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35:1547-1549. https://doi.org/10.1093/molbev/msy096
  29. Lee, J. P., Lee, S.-W., Kim, C. S., Son, J. H., Song, J. H., Lee, K. Y., Kim, H. J., Jung, S. J. and Moon, B. J. 2006. Evaluation of formulations of Bacillus licheniformis for the biological control of tomato gray mold caused by Botrytis cinerea. Biol. Control 37:329-337. https://doi.org/10.1016/j.biocontrol.2006.01.001
  30. Li, Q., Ning, P., Zheng, L., Huang, J., Li, G. and Hsiang, T. 2010. Fumigant activity of volatiles of Streptomyces globisporus JK-1 against Penicillium italicum on Citrus microcarpa. Postharvest Biol. Technol. 58:157-165. https://doi.org/10.1016/j.postharvbio.2010.06.003
  31. Li, X., Zhang, Y., Wei, Z., Guan, Z., Cai, Y. and Liao, X. 2016. Antifungal activity of isolated Bacillus amyloliquefaciens SYBC H47 for the biocontrol of peach gummosis. PLoS ONE 11:e0162125. https://doi.org/10.1371/journal.pone.0162125
  32. Lopez-Lara, I. M., Nogales, J., Pech-Canul, A., Calatrava-Morales, N., Bernabeu-Roda, L. M., Duran, P., Cuellar, V., Olivares, J., Alvarez, L., Palenzuela-Bretones, D., Romero, M., Heeb, S., Camara, M., Geiger, O. and Soto, M. J. 2018. 2-Tridecanone impacts surface-associated bacterial behaviours and hinders plant-bacteria interactions. Environ. Microbiol. 20:2049-2065. https://doi.org/10.1111/1462-2920.14083
  33. Lorito, M., Peterbauer, C., Hayes, C. K. and Harman, G. E. 1994. Synergistic interaction between fungal cell wall degrading enzymes and different antifungal compounds enhances inhibition of spore germination. Microbiology 140:623-629. https://doi.org/10.1099/00221287-140-3-623
  34. Mauch, F., Mauch-Mani, B. and Boller, T. 1988. Antifungal hydrolases in pea tissue: II. Inhibition of fungal growth by combinations of chitinase and β-1,3-glucanase. Plant Physiol. 88:936-942. https://doi.org/10.1104/pp.88.3.936
  35. Morita, T., Tanaka, I., Ryuda, N., Ikari, M., Ueno, D. and Someya, T. 2019. Antifungal spectrum characterization and identification of strong volatile organic compounds produced by Bacillus pumilus TM-R. Heliyon 5:e01817. https://doi.org/10.1016/j.heliyon.2019.e01817
  36. Nautiyal, C. S. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 170:265-270. https://doi.org/10.1016/S0378-1097(98)00555-2
  37. Nguyen, H. T., Kim, S., Yu, N. H., Park, A. R., Yoon, H., Bae, C.- H., Yeo, J. H., Kim, I. S. and Kim, J.-C. 2019. Antimicrobial activities of an oxygenated cyclohexanone derivative isolated from Amphirosellinia nigrospora JS-1675 against various plant pathogenic bacteria and fungi. J. Appl. Microbiol. 126:894-904. https://doi.org/10.1111/jam.14138
  38. O'Toole, G. A., Pratt, L. A., Watnick, P. I., Newman, D. K., Weaver, V. B. and Kolter, R. 1999. Genetic approaches to study of biofilms. Methods Enzymol. 310:91-109. https://doi.org/10.1016/S0076-6879(99)10008-9
  39. Proffer, T. J., Lizotte, E., Rothwell, N. L. and Sundin, G. W. 2013. Evaluation of dodine, fluopyram and penthiopyrad for the management of leaf spot and powdery mildew of tart cherry, and fungicide sensitivity screening of Michigan populations of Blumeriella jaapii. Pest Manag. Sci. 69:747-754. https://doi.org/10.1002/ps.3434
  40. R Core Team. 2018. R: a language and environment for statistical computing. URL https://www.r-project.org/ [14 Febuary 2022].
  41. Raza, W., Ling, N., Yang, L., Huang, Q. and Shen, Q. 2016. Response of tomato wilt pathogen Ralstonia solanacearum to the volatile organic compounds produced by a biocontrol strain Bacillus amyloliquefaciens SQR-9. Sci. Rep. 6:24856. https://doi.org/10.1038/srep24856
  42. Romero, D., de Vicente, A., Rakotoaly, R. H., Dufour, S. E., Veening, J.-W., Arrebola, E., Cazorla, F. M., Kuipers, O. P., Paquot, M. and Perez-Garcia, A. 2007. The iturin and fengycin families of lipopeptides are key factors in antagonism of Bacillus subtilis toward Podosphaera fusca. Mol. Plant- Microbe Interact. 20:430-440. https://doi.org/10.1094/mpmi-20-4-0430
  43. Schallmey, M., Singh, A. and Ward, O. P. 2004. Developments in the use of Bacillus species for industrial production. Can. J. Microbiol. 50:1-17. https://doi.org/10.1139/w03-076
  44. Schwyn, B. and Neilands, J. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160:47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  45. Senthilkumar, M., Swarnalakshmi, K., Govindasamy, V., Lee, Y. K. and Annapurna, K. 2009. Biocontrol potential of soybean bacterial endophytes against charcoal rot fungus, Rhizoctonia bataticola. Curr. Microbiol. 58:288-293. https://doi.org/10.1007/s00284-008-9329-z
  46. Shemesh, M. and Chai, Y. 2013. A combination of glycerol and manganese promotes biofilm formation in Bacillus subtilis via histidine kinase KinD signaling. J. Bacteriol. 195:2747-2754. https://doi.org/10.1128/JB.00028-13
  47. Tahir, H. A. S., Gu, Q., Wu, H., Niu, Y., Huo, R. and Gao, X. 2017. Bacillus volatiles adversely affect the physiology and ultra-structure of Ralstonia solanacearum and induce systemic resistance in tobacco against bacterial wilt. Sci. Rep. 7:40481. https://doi.org/10.1038/srep40481
  48. Wang, S. L. and Chang, W.-T. 1997. Purification and characterization of two bifunctional chitinases/lysozymes extracellularly produced by Pseudomonas aeruginosa K-187 in a shrimp and crab shell powder medium. Appl. Environ. Microbiol. 63:380-386. https://doi.org/10.1128/aem.63.2.380-386.1997
  49. Williams-Woodward, J. L. 1998. Effect of fungicide treatment to control shot-hole disease of cherry laurel. URL http://www.canr.org/98013.pdf [14 Febuary 2022].
  50. Wilson, K. E., Flor, J. E., Schwartz, R. E., Joshua, H., Smith, J. L., Pelak, B. A., Liesch, J. M. and Hensens, O. D. 1987. Difficidin and oxydifficidin: novel broad spectrum antibacterial antibiotics produced by Bacillus subtilis. II. Isolation and physico-chemical characterization. J. Antibiot. 40:1682-1691. https://doi.org/10.7164/antibiotics.40.1682
  51. Wu, L., Wu, H., Chen, L., Yu, X., Borriss, R. and Gao, X. 2015. Difficidin and bacilysin from Bacillus amyloliquefaciens FZB42 have antibacterial activity against Xanthomonas oryzae rice pathogens. Sci. Rep. 5:12975. https://doi.org/10.1038/srep12975
  52. Xu, B.-H., Lu, Y.-Q., Ye, Z.-W., Zheng, Q.-W., Wei, T., Lin, J.-F. and Guo, L.-Q. 2018. Genomics-guided discovery and structure identification of cyclic lipopeptides from the Bacillus siamensis JFL15. PLoS ONE 13:e0202893. https://doi.org/10.1371/journal.pone.0202893
  53. Xu, S. J. and Kim, B. S. 2014. Biocontrol of fusarium crown and root rot and promotion of growth of tomato by Paenibacillus strains isolated from soil. Mycobiology 42:158-166. https://doi.org/10.5941/MYCO.2014.42.2.158
  54. Yoshida, S., Hiradate, S., Tsukamoto, T., Hatakeda, K. and Shirata, A. 2001. Antimicrobial activity of culture filtrate of Bacillus amyloliquefaciens RC-2 isolated from mulberry leaves. Phytopathology 91:181-187. https://doi.org/10.1094/PHYTO.2001.91.2.181
  55. Yuan, J., Raza, W., Shen, Q. and Huang, Q. 2012. Antifungal activity of Bacillus amyloliquefaciens NJN-6 volatile compounds against Fusarium oxysporum f. sp. cubense. Appl. Environ. Microbiol. 78:5942-5944. https://doi.org/10.1128/AEM.01357-12
  56. Zhang, X., Li, B., Wang, Y., Guo, Q., Lu, X., Li, S. and Ma, P. 2013. Lipopeptides, a novel protein, and volatile compounds contribute to the antifungal activity of the biocontrol agent Bacillus atrophaeus CAB-1. Appl. Microbiol. Biotechnol. 97:9525-9534. https://doi.org/10.1007/s00253-013-5198-x
  57. Zheng, M., Shi, J., Shi, J., Wang, Q. and Li, Y. 2013. Antimicrobial effects of volatiles produced by two antagonistic Bacillus strains on the anthracnose pathogen in postharvest mangos. Biol. Control 65:200-206. https://doi.org/10.1016/j.biocontrol.2013.02.004
  58. Zlatkovic, M., Keca, N., Wingfield, M. J., Jami, F. and Slippers, B. 2016. Shot hole disease on Prunus laurocerasus caused by Neofusicoccum parvum in Serbia. For. Pathol. 46:666-669. https://doi.org/10.1111/efp.12300