DOI QR코드

DOI QR Code

SOME RESULTS ON INVARINAT SUBMANIFOLDS OF LORENTZIAN PARA-KENMOTSU MANIFOLDS

  • Received : 2020.12.28
  • Accepted : 2021.12.29
  • Published : 2022.03.30

Abstract

The purpose of this paper is to study invariant submanifolds of a Lorentzian para Kenmotsu manifold. We obtain the necessary and sufficient conditions for an invariant submanifold of a Lorentzian para Kenmotsu manifold to be totally geodesic. Finally, a non-trivial example is built in order to verify our main results.

Keywords

References

  1. S. K. Hui., V. N. Mishra, T., Pal and Vandana, Some Classes of Invariant Submanifolds of (LCS)n-Manifolds, Italian J. of Pure and Appl. Math. 39 (2018), 359-372.
  2. V. Venkatesha and S. Basavarajappa, Invariant Submanifolds of LP-Sasakian Manifolds, Khayyam J. Math. 6 (1) (2020), 16-26.
  3. S. Sular., C. Ozgur and C. Murathan, Pseudoparallel Anti-Invaraint Submanifolds of Kenmotsu Manifolds, Hacettepe J. of Math. and Stat. 39 (4) (2010), 535-543.
  4. B. C. Montano., L. D. Terlizzi and M.M Tripathi, Invariant Submanifolds of Contact (κ, µ)-Manifolds, Glasgow Math. J. 50 (2008), 499-507. https://doi.org/10.1017/S0017089508004369
  5. M. S., Siddesha and C. S Bagewadi, Invariant Submanifolds of (κ, µ)-Contact Manifolds Admitting Guarter Symmetric Metric Connection, International J. of Math. Trends and Tech(IJMTT). 34 (2) (2016), 48-53. https://doi.org/10.14445/22315373/IJMTT-V34P511
  6. S. Koneyuki and F. L. Williams, Almost paracontact and parahodge Structures on Manifolds, Nagoya Math.J. 90 (1985), 173-187.
  7. S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Globanal Geom. 36 (2009), 37-60. https://doi.org/10.1007/s10455-008-9147-3
  8. B. C. Montano., I. K. Erken and C. Murathan, Nullity Conditions in Paracontact Geometry, Differential Geom. Appl. 30 (2010), 79-100.
  9. D. G. Prakasha and K. Mirji, On (κ, µ)-Paracontact Metric Manifolds, Gen. Math. Notes. 25 (2) (2014), 68-77.
  10. S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom. 36 (2009), 68-77.
  11. M. At,ceken., U. Yildirim and S. Dirik, Semiparallel Submanifolds of a Normal Paracontact Metric Manifol, Hacet. J. Math. Stat. 48 (2) (2019), 501-509.
  12. D. E. Blair, T. Koufogiorgos, B. J. Papatoniou, Contact Metric Manifolds Satisfying a Nullity Conditions, Israel J. Math. 91 (1995), 189-214. https://doi.org/10.1007/BF02761646
  13. Venkatesha and D. M. Naik, Cetain Results on K-Paracontact and Para Sasakian Manifolds, J. Geom. 108 (2017), 939-052. https://doi.org/10.1007/s00022-017-0387-x