References
- S. K. Hui., V. N. Mishra, T., Pal and Vandana, Some Classes of Invariant Submanifolds of (LCS)n-Manifolds, Italian J. of Pure and Appl. Math. 39 (2018), 359-372.
- V. Venkatesha and S. Basavarajappa, Invariant Submanifolds of LP-Sasakian Manifolds, Khayyam J. Math. 6 (1) (2020), 16-26.
- S. Sular., C. Ozgur and C. Murathan, Pseudoparallel Anti-Invaraint Submanifolds of Kenmotsu Manifolds, Hacettepe J. of Math. and Stat. 39 (4) (2010), 535-543.
- B. C. Montano., L. D. Terlizzi and M.M Tripathi, Invariant Submanifolds of Contact (κ, µ)-Manifolds, Glasgow Math. J. 50 (2008), 499-507. https://doi.org/10.1017/S0017089508004369
- M. S., Siddesha and C. S Bagewadi, Invariant Submanifolds of (κ, µ)-Contact Manifolds Admitting Guarter Symmetric Metric Connection, International J. of Math. Trends and Tech(IJMTT). 34 (2) (2016), 48-53. https://doi.org/10.14445/22315373/IJMTT-V34P511
- S. Koneyuki and F. L. Williams, Almost paracontact and parahodge Structures on Manifolds, Nagoya Math.J. 90 (1985), 173-187.
- S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Globanal Geom. 36 (2009), 37-60. https://doi.org/10.1007/s10455-008-9147-3
- B. C. Montano., I. K. Erken and C. Murathan, Nullity Conditions in Paracontact Geometry, Differential Geom. Appl. 30 (2010), 79-100.
- D. G. Prakasha and K. Mirji, On (κ, µ)-Paracontact Metric Manifolds, Gen. Math. Notes. 25 (2) (2014), 68-77.
- S. Zamkovay, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom. 36 (2009), 68-77.
- M. At,ceken., U. Yildirim and S. Dirik, Semiparallel Submanifolds of a Normal Paracontact Metric Manifol, Hacet. J. Math. Stat. 48 (2) (2019), 501-509.
- D. E. Blair, T. Koufogiorgos, B. J. Papatoniou, Contact Metric Manifolds Satisfying a Nullity Conditions, Israel J. Math. 91 (1995), 189-214. https://doi.org/10.1007/BF02761646
- Venkatesha and D. M. Naik, Cetain Results on K-Paracontact and Para Sasakian Manifolds, J. Geom. 108 (2017), 939-052. https://doi.org/10.1007/s00022-017-0387-x