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ABSTRACT. Analysis of non-integer order thermoelastic temperature distribution and it’s ther-
mal deflection of thin hollow circular disk under the axi-symmetric heat supply is investigated.
Initially, the disk is kept at zero temperature. For t > 0 the parametric surfaces are ther-
mally insulated and axi-symmetric heat supply on the thickness of the disk. The governing heat
conduction equation has been solved by integral transform technique, including Mittag-Leffler
function. The results have been computed numerically and illustrated graphically with the help
of PTC-Mathcad.

1. INTRODUCTION

Biot [1] introduced the generalization of the classical coupled thermoelasticity theory. Lord
and Shulman [2] introduced the generalized dynamical theory of thermoelasticity with one
relaxation time, for the isotropic body. Ishihara et al. [3] discussed the transient thermo elasto-
plastic bending problems of circular plate making use of the strain increment theorem. Kar
et al. [4] considered the generalized thermoelastic problem of a hollow sphere under thermal
shock. Gaikwad and Ghadle [5] discussed the steady-state thermoelastic problem for a finite
length hollow circular cylinder. Some contribution of this theory are given [6, 7, 8, 9, 12, 13].
The nonhomogeneous heat conduction problem of a thin hollow circular disk and its thermal
deflection under heat generation was solved in [10].

The thermoelastic analysis and its deformation of a thin hollow circular disk subject to a
partially distributed and axisymmetric heat supply on the upper surface studied in [11]. Stud-
ied the time-fractional heat conduction problem in a thin hollow circular disk and its thermal
deflection in [14]. Analyzed the transient thermoelastic temperture distribution of a thin cir-
cular plate and its thermal deflection under uniform heat generation in [15]. discussed the
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transient thermoelastic stress analysis for thin circular plate due to uniform internal heat gen-
eration in [16]. Introduced the generalized theory of magneto-thermo-viscoelastic spherical
cavity problem under fractional order derivative using the state space approach in [17]. Re-
cently, many thermoelastic problems have been discussed [18, 19, 20, 21, 22].

2. PROBLEM FORMULATION

We consider a thin, hollow circular disk of thickness h occupying space D : a ≤ r ≤ b,
−h/2 ≤ z ≤ h/2 initially the disk is kept at zero temperature. For t > 0 the parametric
surfaces are thermally insulated and axi-symmetric heat supply on the thickness of the disk.

A mathematical model is prepared considering analysis of non-integer order thermoelastic
temperature distribution and it’s deflection of thin hollow circular disk under the axi-symmetric
heat supply using Caputo type time fractional heat conduction equation of order α.
The definition of Caputo type fractional derivative given by [23]

Dαf(t) =


1

Γ(n− α)

∫ t
0

fn(τ)

(t− τ)α+1−ndτ, n-1 < α < n;

df(t)

dt
, n=1.

For finding the Laplace transform, the Caputo derivative requires information of the initial
values of the function f(t) and its integer derivative of the order k = 1, 2, ..., n− 1.

L{Dαf(t); s} = sαF (s)−
n−1∑
k=0

sα−k−1f (k)(0), n− 1 < α < n

. Also, the definition of Riemann-Liouville fractional derivative given by [23]

aD
α
t =

(
d

dt

)n ∫ t

a
(t− τ)n−αf(τ)dτ, n− 1 < α < n.

The temperature of the hollow circular disk T (r, z, t) at time t satisfying the time fractional
differential equation,

∂2T

∂r2
+

1

r

∂T

∂r
+
∂2T

∂z2
+
g(r, z, t)

kt
=

1

k

∂αT

∂tα
, (2.1)

with the boundary conditions,

kDI−α
RL

∂T

∂r
= 0, at r = a, for t > 0, (2.2)

kDI−α
RL

∂T

∂r
= 0, at r = b, for t > 0, (2.3)

kDI−α
RL

∂T

∂z
= Q0f(r, t), at z = h/2, for t > 0, (2.4)

kDI−α
RL

∂T

∂z
= 0, at z = −h/2, for t > 0, (2.5)
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where, k, kt are the thermal diffusivity and thermal conductivity, D−αRLT (r, ϕ, z, t) for α > 0
is the Riemann-Liouville fractional integral IαT (r, ϕ, z, t) and initial conditions,

T = 0, at t = 0, 0 < α ≤ 2 , (2.6)

∂T

∂t
= 0, at t = 0, 1 < α ≤ 2 . (2.7)

The differential equation satisfied the deflection function w(r, t) defined in [10] as

∇2∇2w = − 1

(1− ν)D
∇2MT , (2.8)

where

∇2 =
∂2

∂r2
+

1

r

∂

∂r
, (2.9)

and MT is the thermal moment of the disk, ν is the Poisson’s ratio of the disk material, D is
the flexural rigidity of the disk denoted by

D =
Eh3

12(1− ν2)
. (2.10)

The term MT is defined as

MT = atE

∫ h/2

−h/2
z T (r, z, t)dz, (2.11)

at and E are the coefficients of the linear thermal expansion and the Young modulus respec-
tively.

For the plane deformation, the boundary conditions are given as:
∂w

∂r
= 0 at r = a and r = b. (2.12)

Initially, T = w = 0, at t = 0.
Equations (2.1) to (2.12) constitute the mathematical formulation of the problem under consid-
eration.

3. SOLUTION OF THE HEAT CONDUCTION PROBLEM

To obtain the expression for temperature function T (r, z, t) ; Firstly we apply the finite
Fourier transform and its inverse transform over the variable z in the range h/2 ≤ z ≤ −h/2.
Secondly we apply finite Hankel transform and its inverse transform over the variable r in the
range a ≤ r ≤ b defined in [24] to Eq. (2.1) and also using the boundary and initial conation.
Finally, we apply Laplace and their inverse, one obtains the expressions of the temperature
T (r, z, t) as:

T (r, z, t) = Q0

∞∑
p=1

∞∑
m=1

K(ηp, z)K0(βm, r)
1

k(β2m + η2p)
[tα−1Eα,α(−k(β2m + η2p)t

α)].bmp.

(3.1)
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where

bmp =

{∫ h/2

−h/2

∫ b
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K(ηp, z

′)r′.K0(βm, r
′).f(r′, t′).dr′dz′ +

∫ t
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[1− Eα(−k(β2m + η2p)t

α)]

×

[
k

kt
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−h/2

∫ b

r′=a
K(ηp, z

′)r′.K0(βm, r
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]
dt′

}
.

4. DETERMINATION OF THERMAL DEFLECTION

Assume the solution of (2.8) satisfying conditions (2.12) as

w(r, t) =
∞∑
m=1

Cm(t)

[
J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]
, (4.1)

where β1, β2, β3, . . . are the positive root of transcendental equation

J ′0(βa)

J ′0(βb)
− Y ′0(βa)

Y ′0(βb)
= 0.

It can be easily shown that

∂w

∂r
=
∞∑
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− Y ′0(βmr)

Y ′0(βmb)

]
,

∂w

∂r
= 0 at r = a and r = b,

hence the solution (4.1) satisfies the Eq. (2.8).
Now,

∇2∇2w =

(
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Using the well-known result(
∂2T

∂r2
+

1

r

∂T

∂r

)
J0(βmr) = −β2mJ0(βmr),(

∂2T

∂r2
+

1

r

∂T

∂r

)
Y0(βmr) = −β2mY0(βmr),

in Eq. (4.2), one obtains

∇2∇2w =
∞∑
m=1

Cm(t)β4m

[
J0(βmr)

J0(βmb)
− Y0(βmr)

Y0(βmb)

]
.

Substituting Eq. (3.1) in Eq. (2.11), one obtains

MT = −
√

2

π
2atEh
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m=1

[cos(ηph/2) + 1]

η2p
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Now,
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(
∂2T

∂r2
+

1

r

∂T

∂r

)√
2

h
2atEh

∞∑
p=1

∞∑
m=1

[cos(ηph/2) + 1]

η2p

K0(βm, r)
1

k(β2m + η2p)
[tα−1Eα,α(−k(β2m + η2p)t

α)].bmp,

(4.3)

solving Eq. (4.3), one obtains

∇2MT = −
√
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π
2atEh
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(4.4)
Substituting Eq. (4.2) and (4.4) into Eq. (2.8), one obtains
∞∑
m=1

Cm(t)β4m

[
J0(βmr)
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− Y0(βmr)

Y0(βmb)

]
= −
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2

π
2atEh
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2

βmJ
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J
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Solving Eq. (4.5), one obtains
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(4.6)

Finally, substituting Eq. (4.6) in Eq. (4.1), one obtains the expression for the thermal deflection
w(r, t) as

w(r, t) = −
√

2

π
2atEh

∞∑
p=1

∞∑
m=1

[cos(ηph/2) + 1]

η2p

1
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1
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5. SPECIAL CASE AND NUMERICAL RESULTS

Set f(r, t) = (r2 − a2)2(r2 − b2)2(1− e−At),
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where r is the radius measured in meter and A > 0.

The first five positive root of the transcendental equation
J ′0(βa)

J ′0(βb)
− Y ′0(βa)

Y ′0(βb)
= 0 as defined

in [24] are β1 = 3.1965, β2 = 6.3123, β3 = 9.4445, β4 = 12.5812, β5 = 15.7199.
The cooper material was chosen for purpose of numerical calculation for a thin circular hollow
disk. The numerical calculation and graphs has been carried out with help of computational
mathematical software PTC Mathcad Prime-3.1.

Table 1: Material constants

ρ = 2707 kg/m3 k = 84.18 m2/s kt = 386 W/(m. K)
µ = 26.67 at = 16.5 × 10−6 1/K E=70 GPa

ν = 0.35 h = 0.1 m a = 1 m b = 2 m cp = 896 J/kg.K

In this paper, we have obtained solutions to time fractional heat conduction equation of
thin hollow circular disk and its thermal deflection with the help of Caputo time fractional
derivative. It is assumed that, for t > 0 the heat is generated within the solid at rate t =
200 W/m3. The numerical calculation is carried out according to the values of parameters α
reflecting the characteristic features of the solution for various orders of the time-fractional
derivative. Their distinguishing values of the parameter α are considered, 0 < α < 1, α = 1
and 1 < α ≤ 2 depicting weak, normal and strong conductivity. Figure 1 and Figure 2 shows
the variation of temperature and thermal deflection in radial distance r at instants α = 0.50
for time parameter t = 0.25, 0.50, 0.75, 1. Figure 1, indicate the variation of temperature
in radial direction for the different time parameter. Due to the internal heat generation at a
constant rate, initially the temperature is maximum at the inner circular edge (r = 1)and it
decreases with increase the time, becomes zero towards the outer circular edge (r = 2). Figure
2, shows the variation of thermal deflection in radial direction for the different time parameter
t = 0.25, 0.50, 0.75, 1. It is observed that the thermal deflection is maximum at the inner
surface of the disk and it will be zero on the boundary surface. Figure 3 and Figure 4 indicates
the variation of temperature and thermal deflection in radial direction at instants t = 0.50 for
the different values of fractional order parameter α = 0.25, 0.50, 0.75, 1.

Figure 3, shows the variation of temperature in radial direction for the parameter α =
0.25, 0.50, 0.75, 1. It is clear that the temperature is maximum at upper surface of solid and
decreases to zero at r = 1.8 then follows the uniform pattern. Figure 4, shows the variation of
thermal deflection in the radial direction for the different values of fractional order parameters
α = 0.25, 0.50, 0.75, 1. It is observe that the due to the internal heat generation the thermal
deflection is maximum at r = 1.3 and it will be zero on the boundary surface.

6. CONCLUSIONS

We investigate the temperature and thermal deflection in a thin, hollow circular disk in a
theory of thermoelasticity based on fractional heat conduction with the Caputo time-fractional
derivative of order 0 < α < 2. The present method is based on the direct method, using the
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Figure 1: Temperature distribution at α =
0.5 and different values of t.

Figure 2: Thermal deflection at α = 0.5 and
different values of t.

Figure 3: Temperature distribution at t =
0.5 and different values of α.

Figure 4: Thermal deflection at t = 0.5 and
different values of α.

finite Hankel transform, the generalized finite Fourier transform and Laplace transform.The
numerical results show the significant influence of the order of time derivative on the tempera-
ture and thermal deflection with radial coordinate. The fractional order parameter α within the
range 0 < α < 1 and 1 < α < 2 represent the weak and strong conductivity, while α = 1
represents the normal conductivity. The results presented here will be useful for researchers
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working in material sciences also useful in studying the thermal characteristics of various bod-
ies in real-life engineering problems, mathematical biology by considering the time fractional
derivative in the field equations.
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