Acknowledgement
This study was partially supported by a grant (No. 2019R1A2B5B01070542) from the Basic Science Research Program of the National Research Foundation (NRF) funded by the Ministry of Science, ICT & Future Planning, Republic of Korea. This research was also supported by a grant (No. 2018R1A61A03023584) from the University Emphasis Research Institute Support Program funded by the NRF, Republic of Korea.
References
- Delves PJ, Roitt IM. 2000. The immune system. N. Engl. J. Med. 343: 37-49. https://doi.org/10.1056/NEJM200007063430107
- Zhang WN, Gong LL, Liu Y, Zhou ZB, Wan CX, Xu JJ, et al. 2020. Immunoenhancement effect of crude polysaccharides of Helvella leucopus on cyclophosphamide-induced immunosuppressive mice. J. Funct. Foods 69: 103942. https://doi.org/10.1016/j.jff.2020.103942
- Huang L, Shen M, Wu T, Yu Y, Yu Q, Chen Y, et al. 2020. Mesona chinensis Benth polysaccharides protect against oxidative stress and immunosuppression in cyclophosphamide-treated mice via MAPKs signal transduction pathways. Int. J. Biol. Macromol. 152: 766-774. https://doi.org/10.1016/j.ijbiomac.2020.02.318
- Guo MZ, Meng M, Feng CC, Wang X, Wang CL. 2019. A novel polysaccharide obtained from Craterellus cornucopioides enhances immunomodulatory activity in immunosuppressive mice models via regulation of the TLR4-NF-κB pathway. Food Funct. 10: 4792-4801. https://doi.org/10.1039/C9FO00201D
- Bai RB, Zhang YJ, Fan JM, Jia XS, Li D, Wang YP, et al. 2020. Immune-enhancement effects of oligosaccharides from Codonopsis pilosula on cyclophosphamide induced immunosuppression in mice. Food Funct. 11: 3306-3315. https://doi.org/10.1039/C9FO02969A
- Sak, K. 2012. Chemotherapy and dietary phytochemical agents. Chemother. Res. Pract. 2012: 282570. https://doi.org/10.1155/2012/282570
- Shirani K, Hassani FV, Razavi-Azarkhiavi K, Heidari S, Zanjani BR, Karimi G. 2015. Phytotrapy of cyclophosphamide-induced immunosuppression. Environ. Toxicol. Pharmacol. 39: 1262-1275. https://doi.org/10.1016/j.etap.2015.04.012
- Ahlmann M., Hempel G. 2016. The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother. Pharmacol. 78: 661-671. https://doi.org/10.1007/s00280-016-3152-1
- Zhou Y, Chen X, Yi R, Li G, Sun P, Qian Y, et al. 2018. Immunomodulatory effect of tremella polysaccharides against cyclophosphamide-induced immunosuppression in mice. Molecules 23: 239. https://doi.org/10.3390/molecules23020239
- Hao LX, Zhao XH. 2016. Immunomodulatory potentials of the water-soluble yam (Dioscorea opposita Thunb) polysaccharides for the normal and cyclophosphamide-suppressed mice. Food Agric. Immunol. 27: 667-677. https://doi.org/10.1080/09540105.2016.1148666
- Zhou R, He D, Xie J, Zhou Q, Zeng H, Li H, Huang L. 2021. The synergistic effects of polysaccharides and ginsenosides from American ginseng (Panax quinquefolius L.) ameliorating cyclophosphamide-induced intestinal immune disorders and gut barrier dysfunctions based on microbiome-metabolomics analysis. Front. Immunol. 12: 1273.
- Zhou X, Dong Q, Kan X, Peng L, Xu X, Fang Y, et al. 2018. Immunomodulatory activity of a novel polysaccharide from Lonicera japonica in immunosuppressed mice induced by cyclophosphamide. PLoS One 13: e0204152. https://doi.org/10.1371/journal.pone.0204152
- Kouakou K, Schepetkin IA, Yapi A, Kirpotina LN, Jutila MA, Quinn MT. 2013. Immunomodulatory activity of polysaccharides isolated from Alchornea cordifolia. J. Ethnopharmacol. 146: 232-242. https://doi.org/10.1016/j.jep.2012.12.037
- Wang X, Gao A, Jiao Y, Zhao Y, Yang X. 2018. Antitumor effect and molecular mechanism of antioxidant polysaccharides from Salvia miltiorrhiza Bunge in human colorectal carcinoma LoVo cells. Int. J. Biol. Macromol. 108: 625-634. https://doi.org/10.1016/j.ijbiomac.2017.12.006
- Xie JT, Wu JA, Mehendale S, Aung HH, Yuan CS. 2004. Anti-hyperglycemic effect of the polysaccharides fraction from American ginseng berry extract in ob/ob mice. Phytomedicine 11: 182-187. https://doi.org/10.1078/0944-7113-00325
- Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J, Jin L. 2012. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr. Polym. 90: 1114-1119. https://doi.org/10.1016/j.carbpol.2012.06.052
- Yu XH, Liu Y, Wu XL, Liu LZ, Fu W, Song DD. 2017. Isolation, purification, characterization and immunostimulatory activity of polysaccharides derived from American ginseng. Carbohydr. Polym. 156: 9-18. https://doi.org/10.1016/j.carbpol.2016.08.092
- Gong Y, Wu J, Li S-T. 2015. Immuno-enhancement effects of Lycium ruthenicum Murr. polysaccharide on cyclophosphamide-induced immunosuppression in mice. Int. J. Clin. Exp. Med. 8: 20631-20637.
- Yoon D, Choi BR, Kim YC, Oh SM, Kim HG, Kim JU, et al. 2019. Comparative analysis of Panax ginseng berries from seven cultivars using UPLC-QTOF/MS and NMR-based metabolic profiling. Biomolecules 9: 424. https://doi.org/10.3390/biom9090424
- Folmer F, Basavaraju U, Jaspars M, Hold G, El-Omar E, Dicato M, et al. 2014. Anticancer effects of bioactive berry compounds. Phytochem. Rev. 13: 295-322. https://doi.org/10.1007/s11101-013-9319-z
- Kim J, Cho S, Kim S, Kim S, Park C, Park H, et al. 2016. Ginseng berry, a promising anti-aging strategy: recent opinions on the biological effects of a traditional Korean ingredient. J. Adv. Res. Biotechnol. 1: 8.
- Park EY, Kim HJ, Kim YK, Park SU, Choi JE, Cha JY, et al. 2012. Increase in insulin secretion induced by Panax ginseng berry extracts contributes to the amelioration of hyperglycemia in streptozotocin-induced diabetic mice. J. Ginseng Res. 36: 153-160. https://doi.org/10.5142/jgr.2012.36.2.153
- Shao ZH, Xie JT, Vanden Hoek TL, Mehendale S, Aung H, Li CQ, et al. 2004. Antioxidant effects of American ginseng berry extract in cardiomyocytes exposed to acute oxidant stress. Biochim. Biophys. Acta 1670: 165-171. https://doi.org/10.1016/j.bbagen.2003.12.001
- Wang Y, Huang M, Sun R, Pan L. 2015. Extraction, characterization of a Ginseng fruits polysaccharide and its immune modulating activities in rats with Lewis lung carcinoma. Carbohydr. Polym. 127: 215-221. https://doi.org/10.1016/j.carbpol.2015.03.070
- Lee JI, Park KS, Cho IH. 2019. Panax ginseng: a candidate herbal medicine for autoimmune disease. J. Ginseng Res. 43: 342-348. https://doi.org/10.1016/j.jgr.2018.10.002
- Wang CZ, Anderson S, Du W, He TC, Yuan CS. 2016. Red ginseng and cancer treatment. Chin. J. Nat. Med. 14: 7-16. https://doi.org/10.3724/SP.J.1009.2016.00007
- Lee DY, Park CW, Lee SJ, Park HR, Seo DB, Park JY, et al. 2019. Immunostimulating and antimetastatic effects of polysaccharides purified from ginseng berry. Am. J. Chinese Med. 47: 823-839. https://doi.org/10.1142/s0192415x19500435
- Zheng L, Wang M, Peng Y, Li X. 2017. Physicochemical characterization of polysaccharides with macrophage immunomodulatory activities isolated from red ginseng (Panax ginseng C. A. Meyer). J. Chem. 2017: 3276430.
- Chen LX, Qi YL, Qi Z, Gao K, Gong RZ, Shao ZJ, et al. 2019. A comparative study on the effects of different parts of Panax ginseng on the immune activity of cyclophosphamide-induced immunosuppressed mice. Molecules 24: 1096. https://doi.org/10.3390/molecules24061096
- Song YR, Sung SK, Jang M, Lim TG, Cho CW, Han CJ, et al. 2018. Enzyme-assisted extraction, chemical characteristics, and immunostimulatory activity of polysaccharides from Korean ginseng (Panax ginseng Meyer). Int. J. Biol. Macromol. 116: 1089-1097. https://doi.org/10.1016/j.ijbiomac.2018.05.132
- Rod-in W, Talapphet N, Monmai C, Jang Ay, You S, Park WJ. 2021. Immune enhancement effects of Korean ginseng berry polysaccharides on RAW264.7 macrophages through MAPK and NF-κB signalling pathways. Food Agric. Immunol. 32: 298-309. https://doi.org/10.1080/09540105.2021.1934419
- Renoux G. 1980. The general immunopharmacology of levamisole. Drugs 20: 89-99. https://doi.org/10.2165/00003495-198020020-00001
- Riaz M, Rahman NU, Zia-Ul-Haq M, Jaffar HZE, Manea R. 2019. Ginseng: A dietary supplement as immune-modulator in various diseases. Trends Food Sci. Technol. 83: 12-30. https://doi.org/10.1016/j.tifs.2018.11.008
- Du XF, Jiang CZ, Wu CF, Won EK, Choung SY. 2008. Synergistic immunostimulating activity of pidotimod and red ginseng acidic polysaccharide against cyclophosphamide-induced immunosuppression. Arch. Pharm. Res. 31: 1153-1159. https://doi.org/10.1007/s12272-001-1282-6
- Yu Q, Nie S-P, Wang J-Q, Huang D-F, Li W-J, Xie M-Y. 2015. Molecular mechanism underlying chemoprotective effects of Ganoderma atrum polysaccharide in cyclophosphamide-induced immunosuppressed mice. J. Funct. Foods. 15: 52-60. https://doi.org/10.1016/j.jff.2015.03.015
- Meng Y, Li B, Jin D, Zhan M, Lu J, Huo G. 2018. Immunomodulatory activity of Lactobacillus plantarum KLDS1.0318 in cyclophosphamide-treated mice. Food Nutr. Res. 62. doi: 10.29219/fnr.v62.1296. eCollection 2018.
- Wang, H., Yang, S., Wang, Y., Jiang, T., Li, S., Lv, Z. 2017. Immunoenhancement effects of glycosaminoglycan from Apostichopus japonicus: In vitro and in cyclophosphamide-induced immunosuppressed mice studies. Mar. Drugs 15: 347. https://doi.org/10.3390/md15110347
- Wen ZS, Tang Z, Gu LX, Xiang XW, Qu YL. 2019. Immunomodulatory effect of low molecular-weight seleno-aminopolysaccharide on immunosuppressive mice. Int. J. Biol. Macromol. 123: 1278-1288. https://doi.org/10.1016/j.ijbiomac.2018.10.099
- Tsiligianni I, Antoniou KM, Kyriakou D, Tzanakis N, Chrysofakis G, Siafakas NM, et al. 2005. Th1/Th2 cytokine pattern in bronchoalveolar lavage fluid and induced sputum in pulmonary sarcoidosis. BMC Pulm. Med. 5: 8. https://doi.org/10.1186/1471-2466-5-8
- Kuroda E, Sugiura T, Zeki K, Yoshida Y, Yamashita U. 2000. Sensitivity difference to the suppressive effect of prostaglandin E2 among mouse strains: A possible mechanism to polarize Th2 Type response in BALB/c Mice. J. Immunol. 164: 2386. https://doi.org/10.4049/jimmunol.164.5.2386