Acknowledgement
This work was supported by the National Key Research and Development Program of China (2017YFB0308401).
References
- Kandasamy N, Velmurugan P, Sundarvel A, Rao JR, Bangaru C, Palanisamy T. 2012. Eco-benign enzymatic dehairing of goatskins utilizing a protease from a Pseudomonas fluorescens species isolated from fish visceral waste. J. Clean. Prod. 25: 27-33. https://doi.org/10.1016/j.jclepro.2011.12.007
- Ockerman HW, Basu L. 2014. BY-PRODUCTS | Hides and Skins. In Dikeman M, Devine C (eds.), pp. 112-124. Encyclopedia of Meat Sciences (Second Ed.) Academic Press, Oxford.
- Kanagaraj J, Senthilvelan T, Panda RC, Kavitha S. 2015. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: A comprehensive review. J. Clean. Prod. 89: 1-17. https://doi.org/10.1016/j.jclepro.2014.11.013
- Thanikaivelan P, Rao JR, Nair BU, Ramasami T. 2004. Progress and recent trends in biotechnological methods for leather processing. Trends Biotechnol. 22: 181-188. https://doi.org/10.1016/j.tibtech.2004.02.008
- Paul T, Jana A, Mandal AK, Mandal A, Das Mohpatra PK, Mondal KC. 2016. Bacterial keratinolytic protease, imminent starter for nextgen leather and detergent industries. Sustain. Chem. Pharm. 3: 8-22. https://doi.org/10.1016/j.scp.2016.01.001
- Ghafoori H, Askari M, Sarikhan S. 2016. Purification and characterization of an extracellular haloalkaline serine protease from the moderately halophilic bacterium, Bacillus iranensis (X5B). Extremophiles 20: 115-123. https://doi.org/10.1007/s00792-015-0804-8
- Barzkar N. 2020. Marine microbial alkaline protease: an efficient and essential tool for various industrial applications. Int. J. Biol. Macromol. 161: 1216-1229. https://doi.org/10.1016/j.ijbiomac.2020.06.072
- Gradisar H, Friedrich J, Krizaj I, Jerala R. 2005. Similarities and specificities of fungal keratinolytic proteases: comparison of keratinases of Paecilomyces marquandii and Doratomyces microsporus to some known proteases. Appl. Environ. Microbiol. 71: 3420-3426. https://doi.org/10.1128/AEM.71.7.3420-3426.2005
- Dettmer A, Cavalli E, Ayub MAZ, Gutterres M. 2013. Environmentally friendly hide unhairing: enzymatic hide processing for the replacement of sodium sulfide and delimig. J. Clean. Prod. 47: 11-18. https://doi.org/10.1016/j.jclepro.2012.04.024
- Sun F, Sun Q, Zhang H, Kong B, Xia X. 2019. Purification and biochemical characteristics of the microbial extracellular protease from Lactobacillus curvatus isolated from Harbin dry sausages. Int. J. Biol. Macromol. 133: 987-997. https://doi.org/10.1016/j.ijbiomac.2019.04.169
- Sharma AK, Kikani BA, Singh SP. 2020. Biochemical, thermodynamic and structural characteristics of a biotechnologically compatible alkaline protease from a haloalkaliphilic, Nocardiopsis dassonvillei OK-18. Int. J. Biol. Macromol.153: 680-696. https://doi.org/10.1016/j.ijbiomac.2020.03.006
- Ben Elhoul M, Zarai Jaouadi N, Rekik H, Bejar W, Boulkour Touioui S, Hmidi M, et al. 2015. A novel detergent-stable solvent-tolerant serine thiol alkaline protease from Streptomyces koyangensis TN650. Int. J. Biol. Macromol. 79: 871-882. https://doi.org/10.1016/j.ijbiomac.2015.06.006
- Brandelli A. 2007. Bacterial keratinases: useful enzymes for bioprocessing agroindustrial wastes and beyond. Food Bioprocess Tech. 1: 105-116. https://doi.org/10.1007/s11947-007-0025-y
- Zarai Jaouadi N, Rekik H, Badis A, Trabelsi S, Belhoul M, Yahiaoui AB, et al. 2013. Biochemical and molecular characterization of a serine keratinase from Brevibacillus brevis US575 with promising keratin-biodegradation and hide-dehairing activities. PLoS One 8: e76722. https://doi.org/10.1371/journal.pone.0076722
- Kostyleva EV, Sereda AS, Velikoretskaya IA, Nefedova LI, Sharikov AY, Tsurikova NV, et al. 2016. A new Bacillus licheniformis mutant strain producing serine protease efficient for hydrolysis of soy meal proteins. Microbiology 85: 462-470. https://doi.org/10.1134/s0026261716040123
- Jagadeesan Y, Meenakshisundaram S, Saravanan V, Balaiah A. 2020. Sustainable production, biochemical and molecular characterization of thermo-and-solvent stable alkaline serine keratinase from novel Bacillus pumilus AR57 for promising poultry solid waste management. Int. J. Biol. Macromol. 163: 135-146. https://doi.org/10.1016/j.ijbiomac.2020.06.219
- Haddar A, Agrebi R, Bougatef A, Hmidet N, Sellami-Kamoun A, Nasri M. 2009. Two detergent stable alkaline serine-proteases from Bacillus mojavensis A21: purification, characterization and potential application as a laundry detergent additive. Bioresour. Technol. 100: 3366-3373. https://doi.org/10.1016/j.biortech.2009.01.061
- Pillai P, Archana G. 2008. Hide depilation and feather disintegration studies with keratinolytic serine protease from a novel Bacillus subtilis isolate. Appl. Microbiol. Biotechnol. 78: 643-650. https://doi.org/10.1007/s00253-008-1355-z
- Zhang RX, Gong JS, Su C, Zhang DD, Tian H, Dou WF, et al. 2016. Biochemical characterization of a novel surfactant-stable serine keratinase with no collagenase activity from Brevibacillus parabrevis CGMCC 10798. Int. J. Biol. Macromol. 93: 843-851. https://doi.org/10.1016/j.ijbiomac.2016.09.063
- Parte AC, Sarda Carbasse J, Meier-Kolthoff JP, Reimer LC, Goker M. 2020. List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. Int. J. Syst. Evol. Microbiol. 70: 5607-5612. https://doi.org/10.1099/ijsem.0.004332
- Li X, Zhang S, Gan L, Cai C, Tian Y, Shi B. 2020. Ornithinibacillus caprae sp. nov, a moderate halophile isolated from the hides of a white goat. Arch. Microbiol. 202: 1469-1476. https://doi.org/10.1007/s00203-020-01855-6
- Meier-Kolthoff JP, Goker M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun. 10: 2182. https://doi.org/10.1038/s41467-019-10210-3
- Li W, Jaroszewski L, Godzik A. 2002. Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18: 77-82. https://doi.org/10.1093/bioinformatics/18.1.77
- State dministration for Quality Supervision and Inspection and Quarantine of the People's Republic of China: The National Standardization Administration Commission GB/T 23527-2009. 2009. Proteinase preparations.
- Laemmli UK. 1970. Cleavage of structure protein during the assembly of the head of bacteriophage T4. Nature 227: 680-685. https://doi.org/10.1038/227680a0
- Garciacarreno FL, Dimes LE, Haard NF. 1993. Substrate gel-electrophoresis for composition and molecular-weight of proteinases of proteinaceous proteinase-inhibitors. Anal. Biochem. 214: 65-69. https://doi.org/10.1006/abio.1993.1457
- Li Y, Wu C, Zhou M, Wang ET, Zhang Z, Liu W, Ning J, Xie Z. 2017. Diversity of cultivable protease-producing bacteria in Laizhou Bay sediments, Bohai Sea, China. Front. Microbiol. 8: 405.
- Pandey S, Rakholiya KD, Raval VH, Singh SP. 2012. Catalysis and stability of an alkaline protease from a haloalkaliphilic bacterium under non-aqueous conditions as a function of pH, salt and temperature. J. Biosci. Bioeng. 114: 251-256. https://doi.org/10.1016/j.jbiosc.2012.03.003
- Thanapun T. 2013. Screening and characterization of protease-producing Virgibacillus, Halobacillus and Oceanobacillus strains from Thai fermented fish. J. Appl. Pharm. Sci. 3: 025-030.
- Rohban R, Amoozegar MA, Ventosa A. 2009. Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake, Iran. J. Ind. Microbiol. Biotechnol. 36: 333-340. https://doi.org/10.1007/s10295-008-0500-0
- Seghal Kiran G, Nishanth Lipton A, Kennedy J, Dobson AD, Selvin J. 2014. A halotolerant thermostable lipase from the marine bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt bacterial biofilms. Bioengineered 5: 305-318. https://doi.org/10.4161/bioe.29898
- Deng A, Wu J, Zhang Y, Zhang G, Wen T. 2010. Purification and characterization of a surfactant-stable high-alkaline protease from Bacillus sp. B001. Bioresour. Technol. 101: 7111-7117.
- Ibrahim ASS, Al-Salamah AA, El-Badawi YB, El-Tayeb MA, Antranikian G. 2015. Detergent-, solvent- and salt-compatible thermoactive alkaline serine protease from halotolerant alkaliphilic Bacillus sp. NPST-AK15: purification and characterization. Extremophiles 19: 961-971. https://doi.org/10.1007/s00792-015-0771-0
- Darwesh OM, Ali SS, Matter IA, Elsamahy T, Mahmoud YA. 2020. Enzymes immobilization onto magnetic nanoparticles to improve industrial and environmental applications. Methods Enzymol. 630: 481-502. https://doi.org/10.1016/bs.mie.2019.11.006
- Gong JS, Wang Y, Zhang DD, Zhang RX, Su C, Li H, et al. 2015. Biochemical characterization of an extreme alkaline and surfactant-stable keratinase derived from a newly isolated actinomycete Streptomyces aureofaciens K13. Rsc. Adv. 5: 24691-24699. https://doi.org/10.1039/C4RA16423G
- Tork SE, Shahein YE, El-Hakim AE, Abdel-Aty AM, Aly MM. 2013. Production and characterization of thermostable metallo-keratinase from newly isolated Bacillus subtilis NRC 3. Int. J. Biol. Macromol. 55: 169-175. https://doi.org/10.1016/j.ijbiomac.2013.01.002
- El-Khonezya MI, Elgammalb EW, Ahmedb EF, Abd-Elaziz AM. 2021. Detergent stable thiol-dependant alkaline protease produced from the endophytic fungus Aspergillus ochraceus BT21: purification and kinetics. Biocatal. Agric. Biotechnol. 35: 102046. https://doi.org/10.1016/j.bcab.2021.102046
- Patil U, Chaudhari A. 2009. Purification and characterization of solvent-tolerant, thermostable, alkaline metalloprotease from alkalophilic Pseudomonas aeruginosa MTCC 7926. J. Chem. Technol. Biotechnol. 84: 1255-1262. https://doi.org/10.1002/jctb.2169
- Maruthiah T, Somanath B, Immanuel G, Palavesam A. 2015. Deproteinization potential and antioxidant property of haloalkalophilic organic solvent tolerant protease from marine Bacillus sp. APCMST-RS3 using marine shell wastes. Biotechnol. Rep. 8: 124-132. https://doi.org/10.1016/j.btre.2015.10.009
- Suwannaphan S, Fufeungsombut E, Promboon A, Chim-anage P. 2017. A serine protease from newly isolated Bacillus sp. for efficient silk degumming, sericin degrading and colour bleaching activities. Int. Biodeter. Biodegr. 117: 141-149. https://doi.org/10.1016/j.ibiod.2016.12.009
- Gegeckas A, Simkute A, Gudiukaite R, Citavicius DJ. 2018. Characterization and application of keratinolytic paptidases from Bacillus spp.. Int. J. Biol. Macromol. 113: 1206-1213. https://doi.org/10.1016/j.ijbiomac.2018.03.046
- Ben Elhoul M, Zarai Jaouadi N, Rekik H, Omrane Benmrad M, Mechri S, Moujehed E, et al. 2016. Biochemical and molecular characterization of new keratinoytic protease from Actinomadura viridilutea DZ50. Int. J. Biol. Macromol. 92: 299-315. https://doi.org/10.1016/j.ijbiomac.2016.07.009
- Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zarai N, et al. 2010. Purification and characterization of a thermostable keratinolytic serine alkaline proteinase from Streptomyces sp. strain AB1 with high stability in organic solvents. Bioresour. Technol. 101: 8361-8369. https://doi.org/10.1016/j.biortech.2010.05.066
- Jellouli K, Bougatef A, Manni L, Agrebi R, Siala R, Younes I, et al. 2009. Molecular and biochemical characterization of an extracellular serine-protease from Vibrio metschnikovii J1. J. Ind. Microbiol. Biotechnol. 36: 939-948. https://doi.org/10.1007/s10295-009-0572-5
- Sujitha P, Kavitha S, Shakilanishi S, Babu NKC, Shanthi C. 2018. Enzymatic dehairing: a comprehensive review on the mechanistic aspects with emphasis on enzyme specificity. Int. J. Biol. Macromol. 118: 168-179. https://doi.org/10.1016/j.ijbiomac.2018.06.081
- Yates JR. 1972. Studies in depilation. Part X. The mechanism of the enzyme depilation process. J. Soc. Leather Trades Chem. 56: 158-177.
- Bouacem K, Bouanane-Darenfed A, Zarai Jaouadi N, Joseph M, Hacene H, Ollivier B, et al. 2016. Novel serine keratinase from Caldicoprobacter algeriensis exhibiting outstanding hide dehairing abilities. Int. J. Biol. Macromol. 86: 321-328. https://doi.org/10.1016/j.ijbiomac.2016.01.074