Acknowledgement
This research was supported by a Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (2020R1A6C101A201, 2021R1A6C103B395).
References
- Baroni A, Buommino E, De Gregorio V, Ruocco E, Ruocco V, Wolf R. 2012. Structure and function of the epidermis related to barrier properties. Clin. Dermatol. 30: 257-262. https://doi.org/10.1016/j.clindermatol.2011.08.007
- Benitez JM, Montans FJ. 2017. The mechanical behavior of skin: Structures and models for the finite element analysis. Comput. Struct. 190: 75-107. https://doi.org/10.1016/j.compstruc.2017.05.003
- Schmuth M, Feingold KR, Elias PM. 2020. Stress test of the skin: The cutaneous permeability barrier treadmill. Exp. Dermatol. 29: 112-113. https://doi.org/10.1111/exd.14055
- Piquero-Casals J, Morgado-Carrasco D, Granger C, Trullas C, Jesus-Silva A, Krutmann J. 2021. Urea in dermatology: A review of its emollient, moisturizing, keratolytic, skin barrier enhancing and antimicrobial properties. Dermatol. Ther. 11: 1905-1915. https://doi.org/10.1007/s13555-021-00611-y
- Koster MI. 2009. Making an epidermis. Ann. N. Y. Acad. Sci. 1170: 7-10. https://doi.org/10.1111/j.1749-6632.2009.04363.x
- Iizuka H. 1994. Epidermal turnover time. J. Dermatol. Sci. 8: 215-217. https://doi.org/10.1016/0923-1811(94)90057-4
- Downing DT. 1992. Lipid and protein structures in the permeability barrier of mammalian epidermis. J. Lipid Res. 33: 301-313. https://doi.org/10.1016/S0022-2275(20)41520-2
- Yagi M, Yonei Y. 2018. Glycative stress and anti-aging: 7. Glycative stress and skin aging. Glycative Stress Res. 5: 50-54.
- Hwa C, Bauer EA, Cohen DE. 2011. Skin biology. Dermatol. Ther. 24: 464-470. https://doi.org/10.1111/j.1529-8019.2012.01460.x
- Kadoya K, Sasaki T, Kostka G, Timpl R, Matsuzaki K, Kumagai N, et al. 2005. Fibulin-5 deposition in human skin: decrease with ageing and ultraviolet B exposure and increase in solar elastosis. Br. J. Dermatol. 153: 607-612. https://doi.org/10.1111/j.1365-2133.2005.06716.x
- Hunter JA. 1973. Diseases of the skin. Structure and function of skin in relation to therapy. Br. Med. J. 4: 340. https://doi.org/10.1136/bmj.4.5992.340
- Amsden BG, Goosen M. 1995. Transdermal delivery of peptide and protein drugs: an overview. AIChE J. 41: 1972-1997. https://doi.org/10.1002/aic.690410814
- Askari M, Naniz MA, Kouhi M, Saberi A, Zolfagharian A, Bodaghi M. 2021. Recent progress in extrusion 3D bioprinting of hydrogel biomaterials for tissue regeneration: a comprehensive review with focus on advanced fabrication techniques. Biomater. Sci. 9: 535-573. https://doi.org/10.1039/D0BM00973C
- Singh M, Haverinen HM, Dhagat P, Jabbour GE. 2010. Inkjet printing-process and its applications. Adv. Mater. 22: 673-685. https://doi.org/10.1002/adma.200901141
- Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, et al. 2010. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31: 7250-7256. https://doi.org/10.1016/j.biomaterials.2010.05.055
- Park JY, Jang J, Kang H. 2018. 3D Bioprinting and its application to organ-on-a-chip. Microelectron. Eng. 200: 1-11. https://doi.org/10.1016/j.mee.2018.08.004
- Xu J, Zheng S, Hu X, Li L, Li W, Parungao R, et al. 2020. Advances in the research of bioinks based on natural collagen, polysaccharide and their derivatives for skin 3D bioprinting. Polymers 12: 1237. https://doi.org/10.3390/polym12061237
- Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, et al. 2009. Characterization of cell viability during bioprinting processes. Biotechnol. J. Healthc. Nutr. Technol. 4: 1168-1177.
- Kim BS, Kwon YW, Kong J, Park GT, Gao G, Han W, et al. 2018. 3D cell printing of in vitro stabilized skin model and in vivo pre-vascularized skin patch using tissue-specific extracellular matrix bioink: a step towards advanced skin tissue engineering. Biomaterials 168: 38-53. https://doi.org/10.1016/j.biomaterials.2018.03.040
- Kim BS, Lee J, Gao G, Cho D. 2017. Direct 3D cell-printing of human skin with functional transwell system. Biofabrication 9: 025034. https://doi.org/10.1088/1758-5090/aa71c8
- Kim BS, Gao G, Kim JY, Cho D. 2019. 3D cell printing of perfusable vascularized human skin equivalent composed of epidermis, dermis, and hypodermis for better structural recapitulation of native skin. Adv. Healthc. Mater. 8: 1801019. https://doi.org/10.1002/adhm.201801019
- Baltazar T, Merola J, Catarino C, Xie CB, Kirkiles-Smith NC, Lee V, et al. 2020. Three dimensional bioprinting of a vascularized and perfusable skin graft using human keratinocytes, fibroblasts, pericytes, and endothelial cells. Tissue Eng. Part A 26: 227-238. https://doi.org/10.1089/ten.tea.2019.0201
- Kang H, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. 2016. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat. Biotechnol. 34: 312-319. https://doi.org/10.1038/nbt.3413
- Adib AA, Sheikhi A, Shahhosseini M, Simeunovic A, Wu S, Castro CE, et al. 2020. Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue engineering. Biofabrication 12: 045006. https://doi.org/10.1088/1758-5090/ab97a1
- Kim HB, Jung S, Park H, Sim DS, Kim M, Das S, et al. 2021. Customized 3D-printed occluders enabling the reproduction of consistent and stable heart failure in swine models. Bio-Des. Manuf. 4: 833-841. https://doi.org/10.1007/s42242-021-00145-4
- Neff EP. 2017. Printing cures: Organovo advances with 3D-printed liver tissue. Lab Anim. 46: 57. https://doi.org/10.1038/laban.1203
- Netzlaff F, Lehr C, Wertz PW, Schaefer UF. 2005. The human epidermis models EpiSkin, SkinEthic and EpiDerm: An evaluation of morphology and their suitability for testing phototoxicity, irritancy, corrosivity, and substance transport. Eur. J. Pharm. Biopharm. 60: 167-178. https://doi.org/10.1016/j.ejpb.2005.03.004
- Bas A, Burns N, Gulotta A, Junker J, Drasler B, Lehner R, et al. 2021. Understanding the development, standardization, and validation process of alternative in vitro test methods for regulatory approval from a researcher perspective. Small 17: e2006027.
- Pfuhler S, van Benthem J, Curren R, Doak SH, Dusinska M, Hayashi M, et al. 2020. Use of in vitro 3D tissue models in genotoxicity testing: strategic fit, validation status and way forward. Report of the working group from the 7th International Workshop on Genotoxicity Testing (IWGT). Mut. Res. Genet. Toxicol. Environ. Mutagen. 850: 503135. https://doi.org/10.1016/j.mrgentox.2020.503135
- Deyrieux AF, Wilson VG. 2007. In vitro culture conditions to study keratinocyte differentiation using the HaCaT cell line. Cytotechnology 54: 77-83. https://doi.org/10.1007/s10616-007-9076-1
- Nobusawa A, Sano T, Negishi A, Yokoo S, Oyama T. 2014. Immunohistochemical staining patterns of cytokeratins 13, 14, and 17 in oral epithelial dysplasia including orthokeratotic dysplasia. Pathol. Int. 64: 20-27. https://doi.org/10.1111/pin.12125
- Roy RR, Shimada K, Murakami S, Hasegawa H. 2021. Contribution of transglutaminases and their substrate proteins to the formation of cornified cell envelope in oral mucosal epithelium. Eur. J. Oral Sci. 129: e12760.
- Pedde RD, Mirani B, Navaei A, Styan T, Wong S, Mehrali M, et al. 2017. Emerging biofabrication strategies for engineering complex tissue constructs. Adv. Mater. 29: 1606061. https://doi.org/10.1002/adma.201606061
- Wang R, Wang Y, Yao B, Hu T, Li Z, Huang S, et al. 2019. Beyond 2D: 3D bioprinting for skin regeneration. Int. Wound J. 16: 134-138. https://doi.org/10.1111/iwj.13003
- Huang J, Fu H, Li C, Dai J, Zhang Z. 2017. Recent advances in cell-laden 3D bioprinting: materials, technologies and applications. J. 3D Print. Med. 1: 245-268. https://doi.org/10.2217/3dp-2017-0010
- Ma X, Liu J, Zhu W, Tang M, Lawrence N, Yu C, et al. 2018. 3D bioprinting of functional tissue models for personalized drug screening and in vitro disease modeling. Adv. Drug Deliv. Rev. 132: 235-251. https://doi.org/10.1016/j.addr.2018.06.011
- McGrath JA, Eady R, Pope FM. 2004. Anatomy and organization of human skin. y: Burns T, Breathnach S, Cox N, Griffiths C (Eds.), Rook's textbook of dermatology.
- Proksch E, Brandner JM, Jensen J. 2008. The skin: an indispensable barrier. Exp. Dermatol. 17: 1063-1072. https://doi.org/10.1111/j.1600-0625.2008.00786.x
- Akiyama M, Takeichi T, McGrath JA, Sugiura K. 2018. Autoinflammatory keratinization diseases: an emerging concept encompassing various inflammatory keratinization disorders of the skin. J. Dermatol. Sci. 90: 105-111. https://doi.org/10.1016/j.jdermsci.2018.01.012
- Herrmann H, Bar H, Kreplak L, Strelkov SV, Aebi U. 2007. Intermediate filaments: from cell architecture to nanomechanics. Nat. Rev. Mol. Cell Biol. 8: 562-573. https://doi.org/10.1038/nrm2197
- Quinlan RA, Schiller DL, Hatzfeld M, Achtstatter T, Moll R, Jorcano JL, et al. 1985. Patterns of expression and organization of cytokeratin intermediate filaments. Ann. N. Y. Acad. Sci. 455: 282-306. https://doi.org/10.1111/j.1749-6632.1985.tb50418.x
- Moll R, Divo M, Langbein L. 2008. The human keratins: biology and pathology. Histochem. Cell Biol. 129: 705. https://doi.org/10.1007/s00418-008-0435-6
- Hohl D, Olano BR, de Viragh PA, Huber M, Detrisac CJ, Schnyder UW, et al. 1993. Expression patterns of loricrin in various species and tissues. Differentiation 54: 25-34. https://doi.org/10.1111/j.1432-0436.1993.tb00656.x
- Pillai S, Bikle DD. 1991. Role of intracellular-free calcium in the cornified envelope formation of keratinocytes: Differences in the mode of action of extracellular calcium and 1, 25 dihydroxyvitamin D3. J. Cell. Physiol. 146: 94-100. https://doi.org/10.1002/jcp.1041460113
- Rahn E, Thier K, Petermann P, Rubsam M, Staeheli P, Iden S, et al. 2017. Epithelial barriers in murine skin during herpes simplex virus 1 infection: the role of tight junction formation. J. Invest. Dermatol. 137: 884-893. https://doi.org/10.1016/j.jid.2016.11.027
- Jean J, Bernard G, Duque-Fernandez A, Auger FA, Pouliot R. 2011. Effects of serum-free culture at the air-liquid interface in a human tissue-engineered skin substitute. Tissue Eng. Part A 17: 877-888. https://doi.org/10.1089/ten.tea.2010.0256