DOI QR코드

DOI QR Code

Myricetin Disturbs the Cell Wall Integrity and Increases the Membrane Permeability of Candida albicans

  • Lee, Heung-Shick (Department of Biotechnology and Bioinformatics, Korea University) ;
  • Kim, Younhee (Department of Korean Medicine, Semyung University)
  • 투고 : 2021.10.12
  • 심사 : 2021.10.28
  • 발행 : 2022.01.28

초록

The fungal cell wall and membrane are the principal targets of antifungals. Herein, we report that myricetin exerts antifungal activity against Candida albicans by damaging the cell wall integrity and notably enhancing the membrane permeability. In the presence of sorbitol, an osmotic protectant, the minimum inhibitory concentration (MIC) of myricetin against C. albicans increased from 20 to 40 and 80 ㎍/ml in 24 and 72 h, respectively, demonstrating that myricetin disturbs the cell wall integrity of C. albicans. Fluorescence microscopic images showed the presence of propidium iodide-stained C. albicans cells, indicating the myricetin-induced initial damage of the cell membrane. The effects of myricetin on the membrane permeability of C. albicans cells were assessed using crystal violet-uptake and intracellular material-leakage assays. The percentage uptakes of crystal violet for myricetin-treated C. albicans cells at 1×, 2×, and 4× the MIC of myricetin were 36.5, 60.6, and 79.4%, respectively, while those for DMSO-treated C. albicans cells were 28.2, 28.9, and 29.7%, respectively. Additionally, myricetin-treated C. albicans cells showed notable DNA and protein leakage, compared with the DMSO-treated controls. Furthermore, treatment of C. albicans cells with 1× the MIC of myricetin showed a 17.2 and 28.0% reduction in the binding of the lipophilic probes diphenylhexatriene and Nile red, respectively, indicating that myricetin alters the lipid components or order in the C. albicans cell membrane, leading to increased membrane permeability. Therefore, these data will provide insights into the pharmacological worth of myricetin as a prospective antifungal for treating C. albicans infections.

키워드

과제정보

This work was supported by the Sabbatical Research Grant 2019 of Semyung University.

참고문헌

  1. Ruhnke M. 2006. Epidemiology of Candida albicans infections and role of non-Candida -albicans yeasts. Curr. Drug Targets 7: 495-504. https://doi.org/10.2174/138945006776359421
  2. Deorukhkar SC, Saini S, Mathew S. 2014. Non-albicans Candida infection: an emerging threat. Interdiscip. Perspec.t Infect. Dis. 2014: 615958.
  3. Odds FC, Gow NA, Brown AJ. 2001. Fungal virulence studies come of age. Genome Biol. 2: REVIEWS1009.
  4. Lortholary O, Dupont B. 1997. Antifungal prophylaxis during neutropenia and immunodeficiency. Clin. Microbiol. Rev. 10: 477-504. https://doi.org/10.1128/cmr.10.3.477
  5. Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327-335. https://doi.org/10.1016/S0966-842X(01)02094-7
  6. Ramage G, Martinez JP, Lopez-Ribot JL. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6: 979-986. https://doi.org/10.1111/j.1567-1364.2006.00117.x
  7. Hitchcock CA, Dickinson K, Brown SB, Evans EG, Adams DJ. 1990. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266: 475-480. https://doi.org/10.1042/bj2660475
  8. Ghannoum MA, Rice LB. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501-517. https://doi.org/10.1128/cmr.12.4.501
  9. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109: 2234-2239. https://doi.org/10.1073/pnas.1117280109
  10. Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10: 400-406. https://doi.org/10.1038/nchembio.1496
  11. Hector RF. 1993. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev. 6: 1-21. https://doi.org/10.1128/cmr.6.1.1-21.1993
  12. Kurtz MB, Douglas CM. 1997. Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol. 35: 79-86. https://doi.org/10.1080/02681219780000961
  13. Vermes A, Guchelaar HJ, Dankert J. 2000. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46: 171-179. https://doi.org/10.1093/jac/46.2.171
  14. Carson CF, Mee BJ, Riley TV. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46: 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
  15. Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267. https://doi.org/10.1128/MMBR.00045-10
  16. Semwal DK, Semwal RB, Combrinck S, Viljoen A. 2016. Myricetin: A dietary molecule with diverse biological activities. Nutrients 8: 90. https://doi.org/10.3390/nu8020090
  17. Jones JR, Lebar MD, Jinwal UK, Abisambra JF, Koren J 3rd, Blair L, et al. 2011. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. J. Nat. Prod. 74: 38-44. https://doi.org/10.1021/np100572z
  18. Umadevi I, Daniel M, Sabnis SD. 1988. Chemotaxonomic studies on some members of Anacardiaceae. Proc. Plant Sci. 98: 205-208. https://doi.org/10.1007/BF03053589
  19. El-kader AMA, El-Readi MZ, Ahmed AS, Nafady AM, Wink M, Ibraheim ZZ. 2013. Polyphenols from aerial parts of Polygonum bellardii and their biological activities. Pharm. Biol. 51: 1026-1034. https://doi.org/10.3109/13880209.2013.775160
  20. Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA. 2011. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 127: 1186-1192. https://doi.org/10.1016/j.foodchem.2011.01.122
  21. Pekkarinen SS, Heinonen IM, Hopia AI. 1999. Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. J. Sci. Food Agric. 79: 499-506. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499::AID-JSFA204>3.0.CO;2-U
  22. Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. 2015. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 142: 19-25. https://doi.org/10.1016/j.lfs.2015.10.004
  23. Wang SJ, Tong Y, Lu S, Yang R, Liao X, Xu YF, et al. 2010. Anti-inflammatory activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Planta Med. 76: 1492-1496. https://doi.org/10.1055/s-0030-1249780
  24. Tong Y, Zhou XM, Wang SJ, Yang Y, Cao YL. 2009. Analgesic activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Arch. Pharm. Res. 32: 527-533. https://doi.org/10.1007/s12272-009-1408-6
  25. Salazar-Aranda R, Granados-Guzman G, Perez-Meseguer J, Gonzalez GM, de Torres NW. 2015. Activity of polyphenolic compounds against Candida glabrata. Molecules 20: 17903-17912. https://doi.org/10.3390/molecules201017903
  26. Maheshwari DT, Yogendra Kumar MS, Verma SK, Singh VK, Singh SN. 2011. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 49: 2422-2428. https://doi.org/10.1016/j.fct.2011.06.061
  27. Clinical and Laboratory Standards Institute. 2008. M27-A3 Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA., USA.
  28. Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329. https://doi.org/10.1016/j.ymeth.2007.02.013
  29. Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 48: 306-310. https://doi.org/10.7164/antibiotics.48.306
  30. Lee HS, Kim Y. 2017. Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J. Microbiol. Biotechnol. 27: 395-404. https://doi.org/10.4014/jmb.1611.11064
  31. Vaara M, Vaara T. 1981. Outer membrane permeability barrier disruption by polymixin in polymixin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19: 578-583. https://doi.org/10.1128/AAC.19.4.578
  32. Lee HS, Kim Y. 2020. Aucklandia lappa causes membrane permeation of Candida albicans. J. Microbiol. Biotechnol. 30: 1827-1834. https://doi.org/10.4014/jmb.2009.09044
  33. Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
  34. Rosenberg M, Azevedo NF, Ivask A. 2019. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 9: 6483. https://doi.org/10.1038/s41598-019-42906-3
  35. Bolard, J. 1986. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864: 257-304. https://doi.org/10.1016/0304-4157(86)90002-X
  36. Gagos M, Koper R, Gruszecki WI. 2001. Spectrophotometric analysis of organisation of dipalmitoylphosphatidylcholine bilayers containing the polyene antibiotic amphotericin B. Biochim. Biophys. Acta 1511: 90-98. https://doi.org/10.1016/S0005-2736(00)00386-2
  37. Gagos M, Gabrielska J, Dalla Serra M, Gruszecki WI. 2005. Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol. Membr. Biol. 22: 433-442. https://doi.org/10.1080/09687860500287832
  38. Hoch HC, Galvani CD, Szarowski DH, Turner JN. 2005. Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97: 580-588. https://doi.org/10.1080/15572536.2006.11832788
  39. Demchenko AP, Mely Y, Duportail G, Klymchenko AS. 2009. Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 96: 3461-3470. https://doi.org/10.1016/j.bpj.2009.02.012
  40. Lee DS, Kim Y, Lee HS. 2017. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation. Microbiology 163: 131-143. https://doi.org/10.1099/mic.0.000399
  41. Strahl H, Burmann F, Hamoen LW. 2014. The actin homologue MreB organizes the bacterial cell membrane. Nat. Commun. 5: 1-11.
  42. Greenspan P, Fowler SD. 1985. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 26: 781-789. https://doi.org/10.1016/S0022-2275(20)34307-8
  43. Wasif Baig M, Pederzoli M, Jurkiewicz P, Cwiklik L, Pittner J. 2018. Orientation of laurdan in phospholipid bilayers influences its fluorescence: quantum mechanics and classical molecular dynamics study. Molecules 23: 1707. https://doi.org/10.3390/molecules23071707
  44. Gao F, Mei E, Lim M, Hochstrasser RM. 2006. Probing lipid vesicles by bimolecular association and dissociation trajectories of single molecules. J. Am. Chem. Soc. 128: 4814-4822. https://doi.org/10.1021/ja058098a
  45. Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 77: 41-47. https://doi.org/10.1016/j.mimet.2009.01.001
  46. Ramirez-Castrillon M, Jaramillo-Garcia VP, Lopes Barros H, Pegas Henriques JA, Stefani V, Valente P. 2021. Nile red incubation time before reading fluorescence greatly influences the yeast neutral lipids quantification. Front. Microbiol. 12: 619313. https://doi.org/10.3389/fmicb.2021.619313
  47. Poontawee R, Yongmanitchai W, Limtong S. 2017. Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochem. 53: 44-60. https://doi.org/10.1016/j.procbio.2016.11.013