Acknowledgement
This work was supported by the Sabbatical Research Grant 2019 of Semyung University.
References
- Ruhnke M. 2006. Epidemiology of Candida albicans infections and role of non-Candida -albicans yeasts. Curr. Drug Targets 7: 495-504. https://doi.org/10.2174/138945006776359421
- Deorukhkar SC, Saini S, Mathew S. 2014. Non-albicans Candida infection: an emerging threat. Interdiscip. Perspec.t Infect. Dis. 2014: 615958.
- Odds FC, Gow NA, Brown AJ. 2001. Fungal virulence studies come of age. Genome Biol. 2: REVIEWS1009.
- Lortholary O, Dupont B. 1997. Antifungal prophylaxis during neutropenia and immunodeficiency. Clin. Microbiol. Rev. 10: 477-504. https://doi.org/10.1128/cmr.10.3.477
- Calderone RA, Fonzi WA. 2001. Virulence factors of Candida albicans. Trends Microbiol. 9: 327-335. https://doi.org/10.1016/S0966-842X(01)02094-7
- Ramage G, Martinez JP, Lopez-Ribot JL. 2006. Candida biofilms on implanted biomaterials: a clinically significant problem. FEMS Yeast Res. 6: 979-986. https://doi.org/10.1111/j.1567-1364.2006.00117.x
- Hitchcock CA, Dickinson K, Brown SB, Evans EG, Adams DJ. 1990. Interaction of azole antifungal antibiotics with cytochrome P450-dependent 14α-sterol demethylase purified from Candida albicans. Biochem. J. 266: 475-480. https://doi.org/10.1042/bj2660475
- Ghannoum MA, Rice LB. 1999. Antifungal agents: mode of action, mechanisms of resistance, and correlation of these mechanisms with bacterial resistance. Clin. Microbiol. Rev. 12: 501-517. https://doi.org/10.1128/cmr.12.4.501
- Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, et al. 2012. Amphotericin primarily kills yeast by simply binding ergosterol. Proc. Natl. Acad. Sci. USA 109: 2234-2239. https://doi.org/10.1073/pnas.1117280109
- Anderson TM, Clay MC, Cioffi AG, Diaz KA, Hisao GS, Tuttle MD, et al. 2014. Amphotericin forms an extramembranous and fungicidal sterol sponge. Nat. Chem. Biol. 10: 400-406. https://doi.org/10.1038/nchembio.1496
- Hector RF. 1993. Compounds active against cell walls of medically important fungi. Clin. Microbiol. Rev. 6: 1-21. https://doi.org/10.1128/cmr.6.1.1-21.1993
- Kurtz MB, Douglas CM. 1997. Lipopeptide inhibitors of fungal glucan synthase. J. Med. Vet. Mycol. 35: 79-86. https://doi.org/10.1080/02681219780000961
- Vermes A, Guchelaar HJ, Dankert J. 2000. Flucytosine: a review of its pharmacology, clinical indications, pharmacokinetics, toxicity and drug interactions. J. Antimicrob. Chemother. 46: 171-179. https://doi.org/10.1093/jac/46.2.171
- Carson CF, Mee BJ, Riley TV. 2002. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob. Agents Chemother. 46: 1914-1920. https://doi.org/10.1128/AAC.46.6.1914-1920.2002
- Shapiro RS, Robbins N, Cowen LE. 2011. Regulatory circuitry governing fungal development, drug resistance, and disease. Microbiol. Mol. Biol. Rev. 75: 213-267. https://doi.org/10.1128/MMBR.00045-10
- Semwal DK, Semwal RB, Combrinck S, Viljoen A. 2016. Myricetin: A dietary molecule with diverse biological activities. Nutrients 8: 90. https://doi.org/10.3390/nu8020090
- Jones JR, Lebar MD, Jinwal UK, Abisambra JF, Koren J 3rd, Blair L, et al. 2011. The diarylheptanoid (+)-aR,11S-myricanol and two flavones from bayberry (Myrica cerifera) destabilize the microtubule-associated protein tau. J. Nat. Prod. 74: 38-44. https://doi.org/10.1021/np100572z
- Umadevi I, Daniel M, Sabnis SD. 1988. Chemotaxonomic studies on some members of Anacardiaceae. Proc. Plant Sci. 98: 205-208. https://doi.org/10.1007/BF03053589
- El-kader AMA, El-Readi MZ, Ahmed AS, Nafady AM, Wink M, Ibraheim ZZ. 2013. Polyphenols from aerial parts of Polygonum bellardii and their biological activities. Pharm. Biol. 51: 1026-1034. https://doi.org/10.3109/13880209.2013.775160
- Chua LS, Latiff NA, Lee SY, Lee CT, Sarmidi MR, Aziz RA. 2011. Flavonoids and phenolic acids from Labisia pumila (Kacip Fatimah). Food Chem. 127: 1186-1192. https://doi.org/10.1016/j.foodchem.2011.01.122
- Pekkarinen SS, Heinonen IM, Hopia AI. 1999. Flavonoids quercetin, myricetin, kaemferol and (+)-catechin as antioxidants in methyl linoleate. J. Sci. Food Agric. 79: 499-506. https://doi.org/10.1002/(SICI)1097-0010(19990315)79:4<499::AID-JSFA204>3.0.CO;2-U
- Devi KP, Rajavel T, Habtemariam S, Nabavi SF, Nabavi SM. 2015. Molecular mechanisms underlying anticancer effects of myricetin. Life Sci. 142: 19-25. https://doi.org/10.1016/j.lfs.2015.10.004
- Wang SJ, Tong Y, Lu S, Yang R, Liao X, Xu YF, et al. 2010. Anti-inflammatory activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Planta Med. 76: 1492-1496. https://doi.org/10.1055/s-0030-1249780
- Tong Y, Zhou XM, Wang SJ, Yang Y, Cao YL. 2009. Analgesic activity of myricetin isolated from Myrica rubra Sieb. et Zucc. leaves. Arch. Pharm. Res. 32: 527-533. https://doi.org/10.1007/s12272-009-1408-6
- Salazar-Aranda R, Granados-Guzman G, Perez-Meseguer J, Gonzalez GM, de Torres NW. 2015. Activity of polyphenolic compounds against Candida glabrata. Molecules 20: 17903-17912. https://doi.org/10.3390/molecules201017903
- Maheshwari DT, Yogendra Kumar MS, Verma SK, Singh VK, Singh SN. 2011. Antioxidant and hepatoprotective activities of phenolic rich fraction of Seabuckthorn (Hippophae rhamnoides L.) leaves. Food Chem. Toxicol. 49: 2422-2428. https://doi.org/10.1016/j.fct.2011.06.061
- Clinical and Laboratory Standards Institute. 2008. M27-A3 Reference method for broth dilution antifungal susceptibility testing of yeasts: Approved standard. 3rd Ed. Clinical and Laboratory Standards Institute, Wayne, PA., USA.
- Liu M, Seidel V, Katerere DR, Gray AI. 2007. Colorimetric broth microdilution method for the antifungal screening of plant extracts against yeast. Methods 42: 325-329. https://doi.org/10.1016/j.ymeth.2007.02.013
- Frost DJ, Brandt KD, Cugier D, Goldman R. 1995. A whole-cell Candida albicans assay for the detection of inhibitors towards fungal cell wall synthesis and assembly. J. Antibiot. 48: 306-310. https://doi.org/10.7164/antibiotics.48.306
- Lee HS, Kim Y. 2017. Paeonia lactiflora inhibits cell wall synthesis and triggers membrane depolarization in Candida albicans. J. Microbiol. Biotechnol. 27: 395-404. https://doi.org/10.4014/jmb.1611.11064
- Vaara M, Vaara T. 1981. Outer membrane permeability barrier disruption by polymixin in polymixin-susceptible and resistant Salmonella typhimurium. Antimicrob. Agents Chemother. 19: 578-583. https://doi.org/10.1128/AAC.19.4.578
- Lee HS, Kim Y. 2020. Aucklandia lappa causes membrane permeation of Candida albicans. J. Microbiol. Biotechnol. 30: 1827-1834. https://doi.org/10.4014/jmb.2009.09044
- Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254. https://doi.org/10.1006/abio.1976.9999
- Rosenberg M, Azevedo NF, Ivask A. 2019. Propidium iodide staining underestimates viability of adherent bacterial cells. Sci. Rep. 9: 6483. https://doi.org/10.1038/s41598-019-42906-3
- Bolard, J. 1986. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta 864: 257-304. https://doi.org/10.1016/0304-4157(86)90002-X
- Gagos M, Koper R, Gruszecki WI. 2001. Spectrophotometric analysis of organisation of dipalmitoylphosphatidylcholine bilayers containing the polyene antibiotic amphotericin B. Biochim. Biophys. Acta 1511: 90-98. https://doi.org/10.1016/S0005-2736(00)00386-2
- Gagos M, Gabrielska J, Dalla Serra M, Gruszecki WI. 2005. Binding of antibiotic amphotericin B to lipid membranes: monomolecular layer technique and linear dichroism-FTIR studies. Mol. Membr. Biol. 22: 433-442. https://doi.org/10.1080/09687860500287832
- Hoch HC, Galvani CD, Szarowski DH, Turner JN. 2005. Two new fluorescent dyes applicable for visualization of fungal cell walls. Mycologia 97: 580-588. https://doi.org/10.1080/15572536.2006.11832788
- Demchenko AP, Mely Y, Duportail G, Klymchenko AS. 2009. Monitoring biophysical properties of lipid membranes by environment-sensitive fluorescent probes. Biophys. J. 96: 3461-3470. https://doi.org/10.1016/j.bpj.2009.02.012
- Lee DS, Kim Y, Lee HS. 2017. The whcD gene of Corynebacterium glutamicum plays roles in cell division and envelope formation. Microbiology 163: 131-143. https://doi.org/10.1099/mic.0.000399
- Strahl H, Burmann F, Hamoen LW. 2014. The actin homologue MreB organizes the bacterial cell membrane. Nat. Commun. 5: 1-11.
- Greenspan P, Fowler SD. 1985. Spectrofluorometric studies of the lipid probe, nile red. J. Lipid Res. 26: 781-789. https://doi.org/10.1016/S0022-2275(20)34307-8
- Wasif Baig M, Pederzoli M, Jurkiewicz P, Cwiklik L, Pittner J. 2018. Orientation of laurdan in phospholipid bilayers influences its fluorescence: quantum mechanics and classical molecular dynamics study. Molecules 23: 1707. https://doi.org/10.3390/molecules23071707
- Gao F, Mei E, Lim M, Hochstrasser RM. 2006. Probing lipid vesicles by bimolecular association and dissociation trajectories of single molecules. J. Am. Chem. Soc. 128: 4814-4822. https://doi.org/10.1021/ja058098a
- Chen W, Zhang C, Song L, Sommerfeld M, Hu Q. 2009. A high throughput Nile red method for quantitative measurement of neutral lipids in microalgae. J. Microbiol. Methods 77: 41-47. https://doi.org/10.1016/j.mimet.2009.01.001
- Ramirez-Castrillon M, Jaramillo-Garcia VP, Lopes Barros H, Pegas Henriques JA, Stefani V, Valente P. 2021. Nile red incubation time before reading fluorescence greatly influences the yeast neutral lipids quantification. Front. Microbiol. 12: 619313. https://doi.org/10.3389/fmicb.2021.619313
- Poontawee R, Yongmanitchai W, Limtong S. 2017. Efficient oleaginous yeasts for lipid production from lignocellulosic sugars and effects of lignocellulose degradation compounds on growth and lipid production. Process Biochem. 53: 44-60. https://doi.org/10.1016/j.procbio.2016.11.013