과제정보
This research was supported by grants from the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1A6A1A03015876 and 2020R1I1A3072574). This paper was supported by the Fund of Biomedical Research Institute, Jeonbuk National University Hospital.
참고문헌
- Balasubramanian R, Rosenzweig AC. 2007. Structural and mechanistic insights into methane oxidation by particulate methane monooxygenase. Acct. Chem. Res. 40: 573-580. https://doi.org/10.1021/ar700004s
- Hakemian AS, Rosenzweig AC. 2007. The biochemistry of methane oxidation. Annu. Rev. Biochem. 76: 223-241. https://doi.org/10.1146/annurev.biochem.76.061505.175355
- Hanson RS, Hanson TE. 1996. Methanotrophic bacteria. Microbiol. Rev. 60: 439-471. https://doi.org/10.1128/mr.60.2.439-471.1996
- Stainthorpe AC, Lees V, Salmond GPC, Dalton H, Murrell JC. 1990. The Methane monooxygenase gene cluster of Methylococcus capsulatus (Bath). Gene 91: 27-34. https://doi.org/10.1016/0378-1119(90)90158-N
- Ward N, Larsen O, Sakwa J, Bruseth L, Khouri H, Durkin AS, et al. 2004. Genomic insights into methanotrophy: The complete genome sequence of Methylococcus capsulatus (Bath). PLoS Biol. 2: e303. https://doi.org/10.1371/journal.pbio.0020303
- Lee C, Ha SC, Rao Z, Hwang Y, Kim DS, Kim SY, et al. 2021. Elucidation of the electron transfer environment in the MMOR FAD-binding domain from Methylosinus sporium 5. Dalton Trans. 50: 16493-16498. https://doi.org/10.1039/D1DT03273A
- Amaral JA, Knowles R. 1995. Growth of methanotrophs in methane and oxygen counter gradients. FEMS Microbiol. Lett. 126: 215-220. https://doi.org/10.1016/0378-1097(95)00012-T
- Balasubramanian R, Smith SM, Rawat S, Yatsunyk LA, Stemmler TL, Rosenzweig AC. 2010. Oxidation of methane by a biological dicopper centre. Nature 465: 115-119. https://doi.org/10.1038/nature08992
- Choi DW, Kunz RC, Boyd ES, Semrau JD, Antholine WE, Han JI, et al. 2003. The membrane-associated methane monooxygenase (pMMO) and pMMO-NADH : quinone oxidoreductase complex from Methylococcus capsulatus Bath. J. Bacteriol. 185: 5755-5764. https://doi.org/10.1128/JB.185.19.5755-5764.2003
- Wang VC, Maji S, Chen PP, Lee HK, Yu SS, Chan SI. 2017. Alkane oxidation: methane monooxygenases, related enzymes, and their biomimetics. Chem. Rev. 117: 8574-8621. https://doi.org/10.1021/acs.chemrev.6b00624
- Leahy JG, Batchelor PJ, Morcomb SM. 2003. Evolution of the soluble diiron monooxygenases. FEMS Microbiol. Rev. 27: 449-479. https://doi.org/10.1016/S0168-6445(03)00023-8
- Lee SY, Lipscomb JD. 1999. Oxygen activation catalyzed by methane monooxygenase hydroxylase component: proton delivery during the O-O bond cleavage steps. Biochemistry 38: 4423-4432. https://doi.org/10.1021/bi982712w
- Lieberman RL, Rosenzweig AC. 2004. Biological methane oxidation: regulation, biochemistry, and active site structure of particulate methane monooxygenase. Crit. Rev. Biochem. Mol. 39: 147-164. https://doi.org/10.1080/10409230490475507
- Merkx M, Kopp DA, Sazinsky MH, Blazyk JL, Muller J, Lippard SJ. 2001. Dioxygen activation and methane hydroxylation by soluble methane monooxygenase: a tale of two irons and three proteins. Angew. Chem. Int. Ed. Engl. 40: 2782-2807. https://doi.org/10.1002/1521-3773(20010803)40:15<2782::AID-ANIE2782>3.0.CO;2-P
- Sullivan JP, Dickinson D, Chase HA. 1998. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit. Rev. Microbiol. 24: 335-373. https://doi.org/10.1080/10408419891294217
- Baik MH, Newcomb M, Friesner RA, Lippard SJ. 2003. Mechanistic studies on the hydroxylation of methane by methane monooxygenase. Chem. Rev. 103: 2385-2419. https://doi.org/10.1021/cr950244f
- Elango N, Radhakrishnan R, Froland WA, Wallar BJ, Earhart CA, Lipscomb JD, et al. 1997. Crystal structure of the hydroxylase component of methane monooxygenase from Methylosinus trichosporium OB3b. Protein Sci. 6: 556-568. https://doi.org/10.1002/pro.5560060305
- Rosenzweig AC, Frederick CA, Lippard SJ, Nordlund P. 1993. Crystal structure of a bacterial nonheme iron hydroxylase that catalyzes the biological oxidation of methane. Nature 366: 537-543. https://doi.org/10.1038/366537a0
- Wallar BJ, Lipscomb JD. 1996. Dioxygen activation by enzymes containing binuclear non-heme iron clusters. Chem. Rev. 96: 2625-2657. https://doi.org/10.1021/cr9500489
- Lee SJ, McCormick MS, Lippard SJ, Cho US. 2013. Control of substrate access to the active site in methane monooxygenase. Nature 494: 380-384. https://doi.org/10.1038/nature11880
- Kim H, An S, Park YR, Jang H, Yoo H, Park SH, et al. 2019. MMOD-induced structural changes of hydroxylase in soluble methane monooxygenase. Sci. Adv. 5: eaax0059. https://doi.org/10.1126/sciadv.aax0059
- Blazyk JL, Gassner GT, Lippard SJ. 2005. Intermolecular electron-transfer reactions in soluble methane monooxygenase: a role for hysteresis in protein function. J. Am. Chem. Soc. 127: 17364-17376. https://doi.org/10.1021/ja0554054
- Brandstetter H, Whittington DA, Lippard SJ, Frederick CA. 1999. Mutational and structural analyses of the regulatory protein B of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Chem. Biol. 6: 441-449. https://doi.org/10.1016/S1074-5521(99)80062-3
- Chang SL, Wallar BJ, Lipscomb JD, Mayo KH. 1999. Solution structure of component B from methane monooxygenase derived through heteronuclear NMR and molecular modeling. Biochemistry 38: 5799-5812. https://doi.org/10.1021/bi982992f
- Chang SL, Wallar BJ, Lipscomb JD, Mayo KH. 2001. Residues in Methylosinus trichosporium OB3b methane monooxygenase component B involved in molecular interactions with reduced- and oxidized-hydroxylase component: a role for the N-terminus. Biochemistry 40: 9539-9551. https://doi.org/10.1021/bi0103462
- Liu Y, Nesheim JC, Lee SK, Lipscomb JD. 1995. Gating effects of component B on oxygen activation by the methane monooxygenase hydroxylase component. J. Biol. Chem. 270: 24662-24665. https://doi.org/10.1074/jbc.270.42.24662
- Sazinsky MH, Lippard SJ. 2005. Product bound structures of the soluble methane monooxygenase hydroxylase from Methylococcus capsulatus (Bath): protein motion in the α-subunit. J. Am. Chem. Soc. 127: 5814-5825. https://doi.org/10.1021/ja044099b
- Walters KJ, Gassner GT, Lippard SJ, Wagner G. 1999. Structure of the soluble methane monooxygenase regulatory protein B. Proc. Natl. Acad. Sci. USA 96: 7877-7882. https://doi.org/10.1073/pnas.96.14.7877
- Wang WX, Lippard SJ. 2014. Diiron oxidation state control of substrate access to the active site of soluble methane monooxygenase mediated by the regulatory component. J. Am. Chem. Soc. 136: 2244-2247. https://doi.org/10.1021/ja412351b
- Chatwood LL, Muller J, Gross JD, Wagner G, Lippard SJ. 2004. NMR structure of the flavin domain from soluble methane monooxygenase reductase from Methylococcus capsulatus (Bath). Biochemistry 43: 11983-11991. https://doi.org/10.1021/bi049066n
- Gassner GT, Lippard SJ. 1999. Component interactions in the soluble methane monooxygenase system from Methylococcus capsulatus (Bath). Biochemistry 38: 12768-12785. https://doi.org/10.1021/bi990841m
- Kopp DA, Gassner GT, Blazyk JL, Lippard SJ. 2001. Electron-transfer reactions of the reductase component of soluble methane monooxygenase from Methylococcus capsulatus (Bath). Biochemistry 40: 14932-14941. https://doi.org/10.1021/bi015556t
- Liu Y, Nesheim JC, Paulsen KE, Stankovich MT, Lipscomb JD. 1997. Roles of the methane monooxygenase reductase component in the regulation of catalysis. Biochemistry 36: 5223-5233. https://doi.org/10.1021/bi962743w
- Muller J, Lugovskoy AA, Wagner G, Lippard SJ. 2002. NMR structure of the [2Fe-2S] ferredoxin domain from soluble methane monooxygenase reductase and interaction with its hydroxylase. Biochemistry 41: 42-51. https://doi.org/10.1021/bi015668k
- Banerjee R, Proshlyakov Y, Lipscomb JD, Proshlyakov DA. 2015. Structure of the key species in the enzymatic oxidation of methane to methanol. Nature 518: 431-434. https://doi.org/10.1038/nature14160
- Cutsail GE 3rd, Banerjee R, Zhou A, Que L Jr., Lipscomb JD, DeBeer S. 2018. High-resolution extended X-ray absorption fine structure analysis provides evidence for a longer Fe...Fe distance in the Q intermediate of methane monooxygenase. J. Am. Chem. Soc. 140: 16807-16820. https://doi.org/10.1021/jacs.8b10313
- Jacobs AB, Banerjee R, Deweese DE, Braun A, Babicz JT, Jr., Gee LB, et al. 2021. Nuclear resonance vibrational spectroscopic definition of the Fe(IV)2 intermediate Q in methane monooxygenase and its reactivity. J. Am. Chem. Soc. 143: 16007-16029. https://doi.org/10.1021/jacs.1c05436
- Schulz CE, Castillo RG, Pantazis DA, DeBeer S, Neese F. 2021. Structure-spectroscopy correlations for intermediate Q of soluble methane monooxygenase: insights from QM/MM calculations. J. Am. Chem. Soc. 143: 6560-6577. https://doi.org/10.1021/jacs.1c01180
- Tinberg CE, Lippard SJ. 2009. Revisiting the mechanism of dioxygen activation in soluble methane monooxygenase from M. capsulatus (Bath): evidence for a multi-step, proton-dependent reaction pathway. Biochemistry 48: 12145-12158. https://doi.org/10.1021/bi901672n
- Tinberg CE, Lippard SJ. 2011. Dioxygen activation in soluble methane monooxygenase. Acct. Chem. Res. 44: 280-288. https://doi.org/10.1021/ar1001473
- Shu L, Nesheim JC, Kauffmann K, Munck E, Lipscomb JD, Que L, Jr. 1997. An Fe2IVO2 diamond core structure for the key intermediate Q of methane monooxygenase. Science 275: 515-518. https://doi.org/10.1126/science.275.5299.515
- Liang AD, Lippard SJ. 2014. Component interactions and electron transfer in toluene/o-xylene monooxygenase. Biochemistry 53: 7368-7375. https://doi.org/10.1021/bi500892n
- Liu KE, Valentine AM, Wang DL, Huynh BH, Edmondson DE, Salifoglou A, et al. 1995. Kinetic and spectroscopic characterization of intermediates and component interactions in reactions of methane monooxygenase from Methylococcus capsulatus (Bath). J. Am. Chem. Soc. 117: 10174-10185. https://doi.org/10.1021/ja00146a002
- Lund J, Dalton H. 1985. Further characterization of the FAD and Fe2S2 redox centres of component C, the NADH: acceptor reductase of the soluble methane monooxygenase of Methylococcus capsulatus (Bath). Eur. J. Biochem. 147: 291-296. https://doi.org/10.1111/j.1432-1033.1985.tb08749.x
- Murray LJ, Lippard SJ. 2007. Substrate trafficking and dioxygen activation in bacterial multicomponent monooxygenases. Acct. Chem. Res. 40: 466-474. https://doi.org/10.1021/ar600040e
- Rosenzweig AC, Sazinsky MH. 2006. Structural insights into dioxygen-activating copper enzymes. Curr. Opin. Struc. Biol. 16: 729-735. https://doi.org/10.1016/j.sbi.2006.09.005