Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (No.2019R1G1A1007247).
References
- Sandhu KS, Punia S. 2017. Enhancement of bioactive compounds in barley cultivars by solid substrate fermentation. J. Food Meas. Charact. 11: 1355-1361. https://doi.org/10.1007/s11694-017-9513-6
- Liu Q, Yao H. 2007. Antioxidant activities of barley seeds extracts. Food Chem. 102:732-737. https://doi.org/10.1016/j.foodchem.2006.06.051
- Chan GCF, Chan WK, Sze DMY. 2009. The effects of β-glucan on human immune and cancer cells. J. Hematol. Oncol. 2: 25. https://doi.org/10.1186/1756-8722-2-25
- Mansor A, Ramli MS, Rashid NYA, Samat N, Lani MN, Sharifudin SA, et al. 2019. Evaluation of selected agri-industrial residues as potential substrates for enhanced tannase production via solid-state fermentation. Biocatal. Agric. Biotechnol. 20: 1012-1016.
- Ji SB, Ra CH. 2021. Coproduction of enzymes and beta-glucan by Aspergillus oryzae using solid-state fermentation of brown rice. J. Microbiol. Biotechnol. 31: 1028-1034. https://doi.org/10.4014/jmb.2105.05005
- Jin FJ, Hu S, Wang BT, Jin L. 2021. Advances in genetic engineering technology and its application in the industrial fungus Aspergillus oryzae. Front. Microbiol. 12: 644404. https://doi.org/10.3389/fmicb.2021.644404
- Mille-Lindblom C, Von Wachenfeldt E, Tranvik LJ. 2004. Ergosterol as a measure of living fungal biomass: persistence in environmental samples after fungal death. J. Microbiol. Methods 59: 253-262. https://doi.org/10.1016/j.mimet.2004.07.010
- Pasanen AL, Yli-Pietila K, Pasanen P, Kalliokoski P, Tarhanen J. 1999. Ergosterol content in various fungal species and biocontaminated building materials. Appl. Environ. Microbiol. 65: 138-142. https://doi.org/10.1128/aem.65.1.138-142.1999
- Gessner MO, Schmitt AL. 1996. Use of solid-phase extraction to determine ergosterol concentrations in plant tissue colonized by fungi. Appl. Environ. Microbiol. 62: 415-419. https://doi.org/10.1128/aem.62.2.415-419.1996
- Klamer M, Baath E. 2004. Estimation of conversion factors for fungal biomass determination in compost using ergosterol and PLFA 18:2 ω6,9. Soil Biol. Biochem. 36: 57-65. https://doi.org/10.1016/j.soilbio.2003.08.019
- Irfan M, Nadeem M, Syed Q. 2014. One-factor-at-time (OFAT) optimization of xylanase production from Trichoderma viride-IR05 in solid-state fermentation. J. Radiat. Res. Appl. Sci. 7: 317-326. https://doi.org/10.1016/j.jrras.2014.04.004
- Beni A, Soki E, Lajtha K, Fekete I. 2014. An optimized HPLC method for soil fungal biomass determination and its application to a detritus manipulation study. J. Microbiol. Methods 103:124-130. https://doi.org/10.1016/j.mimet.2014.05.022
- Qureshi AS, Khushk I, Ali CH, Chisti Y, Ahmad A, Majeed H. 2016. Coproduction of protease and amylase by thermophilic Bacillus sp. BBXS-2 using open solid-state fermentation of lignocellulosic biomass. Biocatal. Agric. Biotechnol. 8: 146-151. https://doi.org/10.1016/j.bcab.2016.09.006
- Yoo HU, Ko MJ, Chung MS. 2020. Hydrolysis of beta-glucan in oat flour during subcritical-water extraction. Food Chem. 308: 125670. https://doi.org/10.1016/j.foodchem.2019.125670
- Ellaiah P, Adinarayana K, Bhavani Y, Padmaja P, Srinivasulu B. 2002. Optimization of process parameters for glucoamylase production under solid state fermentation by a newly isolated Aspergillus species. Process Biochem. 38: 615-620. https://doi.org/10.1016/S0032-9592(02)00188-7
- Robinson PK. 2015. Enzymes: principles and biotechnological applications. Essays Biochem. 59: 1-41. https://doi.org/10.1042/bse0590001
- Kalyanasundaram GT, Doble M, Gummadi SN. 2012. Production and downstream processing of (1→3)-β-D-glucan from mutant strain of Agrobacterium sp ATCC31750. AMB Express 2: 31. https://doi.org/10.1186/2191-0855-2-31
- Sadh PK, Kumar S, Chawla P, Duhan JS. 2018. Fermentation: a boon for production of bioactive compounds by processing of food industries wastes (by-product). Molecules 23: 2560. https://doi.org/10.3390/molecules23102560
- Alauddin M, Islam J, Shirakawa H, Koseki T, Ardiansyah, Komai M. Rice bran as a functional food: an overview of the conversion of rice bran into a superfood/functional food (an overview of their processing and utilization), pp. 291-305., Waisundara V, Shiom N (eds.), IntechOpen, London, U.K.
- Oliveira MDS, Feddern V, Kupsk L, Cipolatti EP, Badiale-Furlong E, de Souza-Soares LA. 2011. Changes in lipid, fatty acids and phospholipids composition of whole rice bran after solid-state fungal fermentation. Bioresour. Technol. 102: 8335-8335. https://doi.org/10.1016/j.biortech.2011.06.025
- Kammoun R, Naili B, Bejar S. 2008. Application of a statistical design to the optimization of parameters and culture medium for α-amylase production by Aspergillus oryzae CBS 819.72 grown on gruel (wheat grinding by-product). Bioresour. Technol. 99: 5602-5609. https://doi.org/10.1016/j.biortech.2007.10.045
- Yasui M, Oda K, Masuo S, Hosoda S, Katayama T, Maruyama J, et al. 2020. Invasive growth of Aspergillus oryzae in rice koji and increase of nuclear number. Fungal Biol. Biotechnol. 7: 8. https://doi.org/10.1186/s40694-020-00099-9
- EI-Naggar MY, EI-Assar SA, Abdul-Gawad SM. 2009. Solid-state fermentation for the production of meroparamycin by Streptomyces sp. strain MAR01. J. Microbiol. Biotechnol. 19: 468-473. https://doi.org/10.4014/jmb.0807.457
- He Q, Chen HZ. 2013. Pilot-scale gas double-dynamic solid-state fermentation for the production of industrial enzymes. Food Bioprocess Technol. 6: 2916-2924. https://doi.org/10.1007/s11947-012-0956-9
- Han JA, Lim ST. 2009. Effect of presoaking on textural, thermal, and digestive properties of cooked brown rice. Cereal Chem. 86: 100-105. https://doi.org/10.1094/CCHEM-86-1-0100
- Yu L, Turner M, Fitzgerald M, Stokes JR, Witt T. 2017. Review of the effects of different processing technologies on cooked and convenience rice quality. Trends Food Sci. Technol. 59:124-138. https://doi.org/10.1016/j.tifs.2016.11.009
- EI-Shishtawy RM, Mohamed SA, Asiri AM, Gomaa AM, Ibrahim IH, AI-Talhi HA. 2014. Solid fermentation of wheat bran for hydrolytic enzymes production and saccharification content by a local isolate Bacillus megatherium. BMC Biotechnol. 14: 29. https://doi.org/10.1186/1472-6750-14-29
- Cuadra T, Fernandez FJ, Tomasini A, Barrios-Gonzalez J. 2008. Influence of pH regulation and nutrient content on cephalosporin C production in solid-state fermentation by Acremonium chrysogenum C10. Lett. Appl. Microbiol. 46: 216-220. https://doi.org/10.1111/j.1472-765X.2007.02285.x
- Lambo AM, Oste R, Nyman MEGL. 2005. Dietary fibre in fermented oat and barley β-glucan rich concentrates. Food Chem. 89: 283-293. https://doi.org/10.1016/j.foodchem.2004.02.035
- Schwarz WH. 2001. The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56: 634-649. https://doi.org/10.1007/s002530100710