Acknowledgement
This study was supported by the National Natural Science Foundation of China (grant numbers 81772284), Youth Cultivation Project of the Army Medical University (2018XQN12), Military Medical Science and Technology Youth Training Project (20QNPY029), and General Projects of Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0799). We are grateful to A. Abd El Wahed in Georg-Aaugust-University Goettingen, Goettingen, Germany for his guidance on the experiment. We also thank Meng Li for his great suggestions for our experiments.
References
- Dong M, Masuyer G, Stenmark P. 2019. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 88: 811-837. https://doi.org/10.1146/annurev-biochem-013118-111654
- Finn CW, Jr., Silver RP, Habig WH, Hardegree MC, Zon G, Garon CF. 1984. The structural gene for tetanus neurotoxin is on a plasmid. Science 224: 881-884. https://doi.org/10.1126/science.6326263
- Masuyer G, Conrad J, Stenmark P. 2017. The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep. 18: 1306-1317. https://doi.org/10.15252/embr.201744198
- Cardinal PR, Henry SM, Joshi MG, Lauerman MH, Park HS. 2020. Fatal necrotizing soft-tissue infection caused by Clostridium tetani in an injecting drug user: A case report. Surg. Infect. (Larchmt) 21: 457-460. https://doi.org/10.1089/sur.2019.244
- Lai X, Hosyanto FF, Xu L. 2020. Risk of Clostridium tetani infection in an elderly patient following hemorrhoid ligation. J. Int. Med. Res. 48: 300060520963983.
- Ergonul O, Egeli D, Kahyaoglu B, Bahar M, Etienne M, Bleck T. 2016. An unexpected tetanus case. Lancet Infect. Dis. 16: 746-752. https://doi.org/10.1016/S1473-3099(16)00075-X
- Yen LM, Thwaites CL. 2019. Tetanus. Lancet 393: 1657-1668. https://doi.org/10.1016/S0140-6736(18)33131-3
- Alves M, Canoui E, Deforges L, Garderet L, Guidet B, Offenstadt G, et al. 2012. An unexpected trismus. Lancet 380: 536. https://doi.org/10.1016/S0140-6736(12)60524-8
- Njuguna HN, Yusuf N, Raza AA, Ahmed B, Tohme RA. 2020. Progress toward maternal and neonatal tetanus elimination - Worldwide, 2000-2018. MMWR Morb. Mortal. Wkly. Rep. 69: 515-520. https://doi.org/10.15585/mmwr.mm6917a2
- Kyu HH, Mumford JE, Stanaway JD, Barber RM, Hancock JR, Vos T, et al. 2017. Mortality from tetanus between 1990 and 2015: findings from the global burden of disease study 2015. BMC Public Health 17: 179. https://doi.org/10.1186/s12889-017-4111-4
- Mori Y, Katasako A, Matsunaga S, Matono T. 2019. Tetanus: remember to vaccinate. Lancet 393: 2331. https://doi.org/10.1016/S0140-6736(19)31137-7
- Melkert D, Kahema L, Melkert P. 2014. Reduction of mortality due to tetanus by immunisation and proper wound management of the patients in Sengerema Designated District Hospital, Tanzania. Trop. Doct. 44: 163-165. https://doi.org/10.1177/0049475514521804
- Okike CO, Muoneke UV, Uwaezuoke SN, Mbagwu EN, Onyeka-Okite E. 2020. The prevalence and case-fatality rates of post-neonatal tetanus in a population of hospitalized nigerian children: An 8-year retrospective review. J. Trop. Pediatr. 66: 201-209. https://doi.org/10.1093/tropej/fmz054
- Trieu HT, Lubis IN, Qui PT, Yen LM, Wills B, Thwaites CL, et al. 2016. Neonatal tetanus in Vietnam: comprehensive intensive care support improves mortality. J. Pediatric. Infect. Dis. Soc. 5: 227-230. https://doi.org/10.1093/jpids/piv059
- Thwaites CL, Beeching NJ, Newton CR. 2015. Maternal and neonatal tetanus. Lancet 385: 362-370. https://doi.org/10.1016/S0140-6736(14)60236-1
- Chen J, Xu Y, Yan H, Zhu Y, Wang L, Zhang Y, et al. 2018. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab. Chip. 18: 2441-2452. https://doi.org/10.1039/C8LC00399H
- Berger SA, Cherubin CE, Nelson S, Levine L. 1978. Tetanus despite preexisting antitetanus antibody. JAMA 240: 769-770. https://doi.org/10.1001/jama.1978.03290080059029
- Zhuang QQ, Chen RT, Zheng YJ, Huang KY, Peng HP, Lin Z, et al. 2021. Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC-based immunochromatography test strip. Biosens. Bioelectron. 177: 112977. https://doi.org/10.1016/j.bios.2021.112977
- Behrensdorf-Nicol HA, Bonifas U, Hanschmann KM, Kramer B, Weisser K. 2013. Binding and cleavage (BINACLE) assay for the functional in vitro detection of tetanus toxin: applicability as alternative method for the safety testing of tetanus toxoids during vaccine production. Vaccine 31: 6247-6253. https://doi.org/10.1016/j.vaccine.2013.10.028
- Akbulut D, Grant KA, McLauchlin J. 2005. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments. J. Clin. Microbiol. 43: 4342-4348. https://doi.org/10.1128/JCM.43.9.4342-4348.2005
- Jiang D, Pu X, Wu J, Li M, Liu P. 2013. Rapid, sensitive, and specific detection of Clostridium tetani by loop-mediated isothermal amplification assay. J. Microbiol. Biotechnol. 23: 1-6. https://doi.org/10.4014/jmb.1205.05063
- Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14: 2986-3012. https://doi.org/10.1038/s41596-019-0210-2
- Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, et al. 2020. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens. Bioelectron. 170: 112674. https://doi.org/10.1016/j.bios.2020.112674
- Zhao Y, Chen F, Li Q, Wang L, Fan C. 2015. Isothermal amplification of nucleic acids. Chem. Rev. 115: 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
- Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, et al. 2019. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 205: 120155. https://doi.org/10.1016/j.talanta.2019.120155
- Yang B, Kong J, Fang X. 2019. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204: 685-692. https://doi.org/10.1016/j.talanta.2019.06.031
- Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, et al. 2019. In situ amplification-based imaging of RNA in living cells. Angew. Chem. Int. Ed. Engl. 58: 11574-11585. https://doi.org/10.1002/anie.201812449
- Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombination proteins. PLoS Biol. 4: e204. https://doi.org/10.1371/journal.pbio.0040204
- Yang M, Ke Y, Wang X, Ren H, Liu W, Lu H, et al. 2016. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Sci. Rep. 6: 26943. https://doi.org/10.1038/srep26943
- Behrmann O, Bachmann I, Spiegel M, Schramm M, Abd El Wahed A, Dobler G, et al. 2020. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (Exo-IQ). Clin. Chem. 66: 1047-1054. https://doi.org/10.1093/clinchem/hvaa116
- Chi YK, Zhao W, Ye MD, Ali F, Wang T, Qi RD. 2020. Evaluation of recombinase polymerase amplification assay for detecting Meloidogyne javanica. Plant Dis. 104: 801-807. https://doi.org/10.1094/pdis-07-19-1473-re
- Xu H, Xia A, Wang D, Zhang Y, Deng S, Lu W, et al. 2020. An ultraportable and versatile point-of-care DNA testing platform. Sci. Adv. 6: eaaz7445. https://doi.org/10.1126/sciadv.aaz7445
- Strayer-Scherer A, Jones JB, Paret ML. 2019. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 109: 690-700. https://doi.org/10.1094/phyto-03-18-0101-r
- Kissenkotter J, Bohlken-Fascher S, Forrest MS, Piepenburg O, Czerny CP, Abd El Wahed A. 2020. Recombinase polymerase amplification assays for the identification of pork and horsemeat. Food Chem. 322: 126759. https://doi.org/10.1016/j.foodchem.2020.126759
- Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. 2019. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol. 19: 186. https://doi.org/10.1186/s12866-019-1562-z
- Zhang L, Peng J, Chen J, Xu L, Zhang Y, Li Y, et al. 2021. Highly sensitive detection of low-abundance BRAF V600E mutation in fine-needle aspiration samples by zip recombinase polymerase amplification. Anal. Chem. 93: 5621-5628. https://doi.org/10.1021/acs.analchem.1c00405
- Cohen JE, Wang R, Shen RF, Wu WW, Keller JE. 2017. Comparative pathogenomics of Clostridium tetani. PLoS One 12: e0182909. https://doi.org/10.1371/journal.pone.0182909
- Zhang X, Lowe SB, Gooding JJ. 2014. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 61: 491-499. https://doi.org/10.1016/j.bios.2014.05.039
- Higgins M, Ravenhall M, Ward D, Phelan J, Ibrahim A, Forrest MS, et al. 2019. PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics 35: 682-684. https://doi.org/10.1093/bioinformatics/bty701