DOI QR코드

DOI QR Code

Rapid Detection of Clostridium tetani by Recombinase Polymerase Amplification Using an Exo Probe

  • Guo, Mingjing (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Feng, Pan (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Zhang, Liqun (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Feng, Chunfeng (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Fu, Jie (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Pu, Xiaoyun (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University) ;
  • Liu, Fei (Department of clinical laboratory, Xinqiao Hospital and The Second Affiliated Hospital, Army Medical University)
  • Received : 2021.09.09
  • Accepted : 2021.11.22
  • Published : 2022.01.28

Abstract

Tetanus is a potentially fatal public health illness resulted from the neurotoxins generated by Clostridium tetani. C. tetani is not easily culturable and culturing the relevant bacteria from infected wounds has rarely been useful in diagnosis; PCR-based assays can only be conducted at highly sophisticated laboratories. Therefore, a real-time recombinase polymerase amplification assay (Exo-RPA) was constructed to identify the fragments of the neurotoxin gene of C. tetani. Primers and the exo probe targeting the conserved region were designed, and the resulting amplicons could be detected in less than 20 min, with a detection limit of 20 copies/reaction. The RPA assay displayed good selectivity, and there were no cross-reactions with other infectious bacteria common in penetrating wounds. Tests of target-spiked serum and pus extract revealed that RPA is robust to interfering factors and has great potential for further development for biological sample analysis. This method has been confirmed to be reliable for discriminating between toxic and nontoxic C. tetani strains. The RPA assay dramatically improves the diagnostic efficacy with simplified device architecture and is a promising alternative to real-time PCR for tetanus detection.

Keywords

Acknowledgement

This study was supported by the National Natural Science Foundation of China (grant numbers 81772284), Youth Cultivation Project of the Army Medical University (2018XQN12), Military Medical Science and Technology Youth Training Project (20QNPY029), and General Projects of Chongqing Natural Science Foundation (cstc2020jcyj-msxmX0799). We are grateful to A. Abd El Wahed in Georg-Aaugust-University Goettingen, Goettingen, Germany for his guidance on the experiment. We also thank Meng Li for his great suggestions for our experiments.

References

  1. Dong M, Masuyer G, Stenmark P. 2019. Botulinum and tetanus neurotoxins. Annu. Rev. Biochem. 88: 811-837. https://doi.org/10.1146/annurev-biochem-013118-111654
  2. Finn CW, Jr., Silver RP, Habig WH, Hardegree MC, Zon G, Garon CF. 1984. The structural gene for tetanus neurotoxin is on a plasmid. Science 224: 881-884. https://doi.org/10.1126/science.6326263
  3. Masuyer G, Conrad J, Stenmark P. 2017. The structure of the tetanus toxin reveals pH-mediated domain dynamics. EMBO Rep. 18: 1306-1317. https://doi.org/10.15252/embr.201744198
  4. Cardinal PR, Henry SM, Joshi MG, Lauerman MH, Park HS. 2020. Fatal necrotizing soft-tissue infection caused by Clostridium tetani in an injecting drug user: A case report. Surg. Infect. (Larchmt) 21: 457-460. https://doi.org/10.1089/sur.2019.244
  5. Lai X, Hosyanto FF, Xu L. 2020. Risk of Clostridium tetani infection in an elderly patient following hemorrhoid ligation. J. Int. Med. Res. 48: 300060520963983.
  6. Ergonul O, Egeli D, Kahyaoglu B, Bahar M, Etienne M, Bleck T. 2016. An unexpected tetanus case. Lancet Infect. Dis. 16: 746-752. https://doi.org/10.1016/S1473-3099(16)00075-X
  7. Yen LM, Thwaites CL. 2019. Tetanus. Lancet 393: 1657-1668. https://doi.org/10.1016/S0140-6736(18)33131-3
  8. Alves M, Canoui E, Deforges L, Garderet L, Guidet B, Offenstadt G, et al. 2012. An unexpected trismus. Lancet 380: 536. https://doi.org/10.1016/S0140-6736(12)60524-8
  9. Njuguna HN, Yusuf N, Raza AA, Ahmed B, Tohme RA. 2020. Progress toward maternal and neonatal tetanus elimination - Worldwide, 2000-2018. MMWR Morb. Mortal. Wkly. Rep. 69: 515-520. https://doi.org/10.15585/mmwr.mm6917a2
  10. Kyu HH, Mumford JE, Stanaway JD, Barber RM, Hancock JR, Vos T, et al. 2017. Mortality from tetanus between 1990 and 2015: findings from the global burden of disease study 2015. BMC Public Health 17: 179. https://doi.org/10.1186/s12889-017-4111-4
  11. Mori Y, Katasako A, Matsunaga S, Matono T. 2019. Tetanus: remember to vaccinate. Lancet 393: 2331. https://doi.org/10.1016/S0140-6736(19)31137-7
  12. Melkert D, Kahema L, Melkert P. 2014. Reduction of mortality due to tetanus by immunisation and proper wound management of the patients in Sengerema Designated District Hospital, Tanzania. Trop. Doct. 44: 163-165. https://doi.org/10.1177/0049475514521804
  13. Okike CO, Muoneke UV, Uwaezuoke SN, Mbagwu EN, Onyeka-Okite E. 2020. The prevalence and case-fatality rates of post-neonatal tetanus in a population of hospitalized nigerian children: An 8-year retrospective review. J. Trop. Pediatr. 66: 201-209. https://doi.org/10.1093/tropej/fmz054
  14. Trieu HT, Lubis IN, Qui PT, Yen LM, Wills B, Thwaites CL, et al. 2016. Neonatal tetanus in Vietnam: comprehensive intensive care support improves mortality. J. Pediatric. Infect. Dis. Soc. 5: 227-230. https://doi.org/10.1093/jpids/piv059
  15. Thwaites CL, Beeching NJ, Newton CR. 2015. Maternal and neonatal tetanus. Lancet 385: 362-370. https://doi.org/10.1016/S0140-6736(14)60236-1
  16. Chen J, Xu Y, Yan H, Zhu Y, Wang L, Zhang Y, et al. 2018. Sensitive and rapid detection of pathogenic bacteria from urine samples using multiplex recombinase polymerase amplification. Lab. Chip. 18: 2441-2452. https://doi.org/10.1039/C8LC00399H
  17. Berger SA, Cherubin CE, Nelson S, Levine L. 1978. Tetanus despite preexisting antitetanus antibody. JAMA 240: 769-770. https://doi.org/10.1001/jama.1978.03290080059029
  18. Zhuang QQ, Chen RT, Zheng YJ, Huang KY, Peng HP, Lin Z, et al. 2021. Detection of tetanus toxoid with fluorescent tetanus human IgG-AuNC-based immunochromatography test strip. Biosens. Bioelectron. 177: 112977. https://doi.org/10.1016/j.bios.2021.112977
  19. Behrensdorf-Nicol HA, Bonifas U, Hanschmann KM, Kramer B, Weisser K. 2013. Binding and cleavage (BINACLE) assay for the functional in vitro detection of tetanus toxin: applicability as alternative method for the safety testing of tetanus toxoids during vaccine production. Vaccine 31: 6247-6253. https://doi.org/10.1016/j.vaccine.2013.10.028
  20. Akbulut D, Grant KA, McLauchlin J. 2005. Improvement in laboratory diagnosis of wound botulism and tetanus among injecting illicit-drug users by use of real-time PCR assays for neurotoxin gene fragments. J. Clin. Microbiol. 43: 4342-4348. https://doi.org/10.1128/JCM.43.9.4342-4348.2005
  21. Jiang D, Pu X, Wu J, Li M, Liu P. 2013. Rapid, sensitive, and specific detection of Clostridium tetani by loop-mediated isothermal amplification assay. J. Microbiol. Biotechnol. 23: 1-6. https://doi.org/10.4014/jmb.1205.05063
  22. Kellner MJ, Koob JG, Gootenberg JS, Abudayyeh OO, Zhang F. 2019. SHERLOCK: nucleic acid detection with CRISPR nucleases. Nat. Protoc. 14: 2986-3012. https://doi.org/10.1038/s41596-019-0210-2
  23. Pumford EA, Lu J, Spaczai I, Prasetyo ME, Zheng EM, Zhang H, et al. 2020. Developments in integrating nucleic acid isothermal amplification and detection systems for point-of-care diagnostics. Biosens. Bioelectron. 170: 112674. https://doi.org/10.1016/j.bios.2020.112674
  24. Zhao Y, Chen F, Li Q, Wang L, Fan C. 2015. Isothermal amplification of nucleic acids. Chem. Rev. 115: 12491-12545. https://doi.org/10.1021/acs.chemrev.5b00428
  25. Kong M, Li Z, Wu J, Hu J, Sheng Y, Wu D, et al. 2019. A wearable microfluidic device for rapid detection of HIV-1 DNA using recombinase polymerase amplification. Talanta 205: 120155. https://doi.org/10.1016/j.talanta.2019.120155
  26. Yang B, Kong J, Fang X. 2019. Bandage-like wearable flexible microfluidic recombinase polymerase amplification sensor for the rapid visual detection of nucleic acids. Talanta 204: 685-692. https://doi.org/10.1016/j.talanta.2019.06.031
  27. Qing Z, Xu J, Hu J, Zheng J, He L, Zou Z, et al. 2019. In situ amplification-based imaging of RNA in living cells. Angew. Chem. Int. Ed. Engl. 58: 11574-11585. https://doi.org/10.1002/anie.201812449
  28. Piepenburg O, Williams CH, Stemple DL, Armes NA. 2006. DNA detection using recombination proteins. PLoS Biol. 4: e204. https://doi.org/10.1371/journal.pbio.0040204
  29. Yang M, Ke Y, Wang X, Ren H, Liu W, Lu H, et al. 2016. Development and evaluation of a rapid and sensitive EBOV-RPA test for rapid diagnosis of Ebola virus disease. Sci. Rep. 6: 26943. https://doi.org/10.1038/srep26943
  30. Behrmann O, Bachmann I, Spiegel M, Schramm M, Abd El Wahed A, Dobler G, et al. 2020. Rapid detection of SARS-CoV-2 by low volume real-time single tube reverse transcription recombinase polymerase amplification using an exo probe with an internally linked quencher (Exo-IQ). Clin. Chem. 66: 1047-1054. https://doi.org/10.1093/clinchem/hvaa116
  31. Chi YK, Zhao W, Ye MD, Ali F, Wang T, Qi RD. 2020. Evaluation of recombinase polymerase amplification assay for detecting Meloidogyne javanica. Plant Dis. 104: 801-807. https://doi.org/10.1094/pdis-07-19-1473-re
  32. Xu H, Xia A, Wang D, Zhang Y, Deng S, Lu W, et al. 2020. An ultraportable and versatile point-of-care DNA testing platform. Sci. Adv. 6: eaaz7445. https://doi.org/10.1126/sciadv.aaz7445
  33. Strayer-Scherer A, Jones JB, Paret ML. 2019. Recombinase polymerase amplification assay for field detection of tomato bacterial spot pathogens. Phytopathology 109: 690-700. https://doi.org/10.1094/phyto-03-18-0101-r
  34. Kissenkotter J, Bohlken-Fascher S, Forrest MS, Piepenburg O, Czerny CP, Abd El Wahed A. 2020. Recombinase polymerase amplification assays for the identification of pork and horsemeat. Food Chem. 322: 126759. https://doi.org/10.1016/j.foodchem.2020.126759
  35. Geng Y, Tan K, Liu L, Sun XX, Zhao B, Wang J. 2019. Development and evaluation of a rapid and sensitive RPA assay for specific detection of Vibrio parahaemolyticus in seafood. BMC Microbiol. 19: 186. https://doi.org/10.1186/s12866-019-1562-z
  36. Zhang L, Peng J, Chen J, Xu L, Zhang Y, Li Y, et al. 2021. Highly sensitive detection of low-abundance BRAF V600E mutation in fine-needle aspiration samples by zip recombinase polymerase amplification. Anal. Chem. 93: 5621-5628. https://doi.org/10.1021/acs.analchem.1c00405
  37. Cohen JE, Wang R, Shen RF, Wu WW, Keller JE. 2017. Comparative pathogenomics of Clostridium tetani. PLoS One 12: e0182909. https://doi.org/10.1371/journal.pone.0182909
  38. Zhang X, Lowe SB, Gooding JJ. 2014. Brief review of monitoring methods for loop-mediated isothermal amplification (LAMP). Biosens. Bioelectron. 61: 491-499. https://doi.org/10.1016/j.bios.2014.05.039
  39. Higgins M, Ravenhall M, Ward D, Phelan J, Ibrahim A, Forrest MS, et al. 2019. PrimedRPA: primer design for recombinase polymerase amplification assays. Bioinformatics 35: 682-684. https://doi.org/10.1093/bioinformatics/bty701