과제정보
This research was supported by the Advanced Biomass R&D Center (ABC) of the Global Frontier Project, funded by the Ministry of Science and ICT (ABC-2010-0029728), a grant from the Nakdonggang National Institute of Biological Resources (NNIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NNIBR202102101), and the National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT, Korea government (2021R1F1A105127511).
참고문헌
- Lam MK, Lee KT. 2012. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol. Adv. 30: 673-690. https://doi.org/10.1016/j.biotechadv.2011.11.008
- Torres CM, Rios SD, Torras C, Salvado J, Mateo-Sanz JM, Jimenez L. 2013. Microalgae-based biodiesel: a multicriteria analysis of the production process using realistic scenarios. Bioresour. Technol. 147: 7-16. https://doi.org/10.1016/j.biortech.2013.07.145
- Fasaei F, Bitter JH, Slegers PM, van Boxtel AJB. 2018. Techno-economic evaluation of microalgae harvesting and dewatering systems. Algal Res. 31: 347-362. https://doi.org/10.1016/j.algal.2017.11.038
- Lurling M. 1999. The smell of water: grazer-induced colony formation in Scenedesmus. Agricultural University of Wageningen.
- Mandal S, Mallick N. 2009. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl. Microbiol. Biotechnol. 84: 281-291. https://doi.org/10.1007/s00253-009-1935-6
- Ho SH, Chen WM, Chang JS. 2010. Scenedesmus obliquus CNW-N as a potential candidate for CO2 mitigation and biodiesel production. Bioresour. Technol. 101: 8725-8730. https://doi.org/10.1016/j.biortech.2010.06.112
- Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, et al. 2014. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour. Technol. 152: 275-282. https://doi.org/10.1016/j.biortech.2013.11.031
- Chen W-C, Hsu Y-C, Chang J-S, Ho S-H, Wang L-F, Wei Y-H. 2019. Enhancing production of lutein by a mixotrophic cultivation system using microalga Scenedesmus obliquus CWL-1. Bioresour. Technol. 291: 121891. https://doi.org/10.1016/j.biortech.2019.121891
- Florez-Miranda L, Canizares-Villanueva RO, Melchy-Antonio O, Martinez-Jeronimo F, Flores-Ortiz CM. 2017. Two stage heterotrophy/photoinduction culture of Scenedesmus incrassatulus: potential for lutein production. J. Biotechnol. 262: 67-74. https://doi.org/10.1016/j.jbiotec.2017.09.002
- Sanchez JF, Fernandez JM, Acien FG, Rueda A, Perez-Parra J, Molina E. 2008. Influence of culture conditions on the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem. 43: 398-405. https://doi.org/10.1016/j.procbio.2008.01.004
- Kijlstra A, Tian Y, Kelly ER, Berendschot TTJM. 2012. Lutein: more than just a filter for blue light. Prog. Retin. Eye Res. 31: 303-315. https://doi.org/10.1016/j.preteyeres.2012.03.002
- Lin JH, Lee DJ, Chang JS. 2015. Lutein production from biomass: marigold flowers versus microalgae. Bioresour. Technol. 184: 421-428. https://doi.org/10.1016/j.biortech.2014.09.099
- Saha SK, Ermis H, Murray P. 2020. Marine microalgae for potential lutein production. Appl. Sci. 10: 6457. https://doi.org/10.3390/app10186457
- Chen CY, Liu CC. 2018. Optimization of lutein production with a two-stage mixotrophic cultivation system with Chlorella sorokiniana MB-1. Bioresour. Technol. 262: 74-79. https://doi.org/10.1016/j.biortech.2018.04.024
- Koh HG, Kang NK, Jeon S, Shin SE, Jeong BR, Chang YK. 2019. Heterologous synthesis of chlorophyll b in Nannochloropsis salina enhances growth and lipid production by increasing photosynthetic efficiency. Biotechnol. Biofuels 12: 122. https://doi.org/10.1186/s13068-019-1462-3
- Tuli HS, Chaudhary P, Beniwal V, Sharma AK. 2015. Microbial pigments as natural color sources: current trends and future perspectives. J. Food Sci. Technol. 52: 4669-4678. https://doi.org/10.1007/s13197-014-1601-6
- Mercado I, Alvarez X, Verduga ME, Cruz A. 2020. Enhancement of biomass and lipid productivities of Scenedesmus sp. cultivated in the wastewater of the dairy industry. Processes 8: 1458. https://doi.org/10.3390/pr8111458
- Safi C, Zebib B, Merah O, Pontalier PY, Vaca-Garcia C. 2014. Morphology, composition, production, processing and applications of Chlorella vulgaris: a review. Renew. Sust. Energ. Rev. 35: 265-278. https://doi.org/10.1016/j.rser.2014.04.007
- Pegg C, Wolf M, Alanagreh La, Portman R, Buchheim MA. 2015. Morphological diversity masks phylogenetic similarity of Ettlia and Haematococcus (Chlorophyceae). Phycologia 54: 385-397. https://doi.org/10.2216/15-015.1
- Kamalanathan M, Chaisutyakorn P, Gleadow R, Beardall J. 2018. A comparison of photoautotrophic, heterotrophic, and mixotrophic growth for biomass production by the green alga Scenedesmus sp. (Chlorophyceae). Phycologia 57: 309-317. https://doi.org/10.2216/17-82.1
- Kim DG, Hur SB. 2013. Growth and fatty acid composition of three heterotrophic Chlorella species. Algae 28: 101-109. https://doi.org/10.4490/algae.2013.28.1.101
- Aligata AJ, Tryner J, Quinn JC, Marchese AJ. 2019. Effect of microalgae cell composition and size on responsiveness to ultrasonic harvesting. J. Appl. Phycol. 31: 1637-1649. https://doi.org/10.1007/s10811-018-1682-0
- Jeon S, Kang NK, Suh WI, Koh HG, Lee B, Chang YK. 2019. Optimization of electroporation-based multiple pulses and further improvement of transformation efficiency using bacterial conditioned medium for Nannochloropsis salina. J. Appl. Phycol. 31: 1153-1161. https://doi.org/10.1007/s10811-018-1599-7
- Poh ZL, Amalina Kadir WN, Lam MK, Uemura Y, Suparmaniam U, Lim JW, et al. 2020. The effect of stress environment towards lipid accumulation in microalgae after harvesting. Renew. Energy 154: 1083-1091. https://doi.org/10.1016/j.renene.2020.03.081
- Shokravi Z, Shokravi H, Chyuan OH, Lau WJ, Koloor SSR, Petru M, et al. 2020. Improving 'lipid productivity' in microalgae by bilateral enhancement of biomass and lipid contents: a review. Sustainability 12: 9083. https://doi.org/10.3390/su12219083
- Minhas AK, Hodgson P, Barrow CJ, Sashidhar B, Adholeya A. 2016. The isolation and identification of new microalgal strains producing oil and carotenoid simultaneously with biofuel potential. Bioresour. Technol. 211: 556-565. https://doi.org/10.1016/j.biortech.2016.03.121
- Ram S, Paliwal C, Mishra S. 2019. Growth medium and nitrogen stress sparked biochemical and carotenogenic alterations in Scenedesmus sp. CCNM 1028. Bioresour. Technol. Rep. 7: 100194. https://doi.org/10.1016/j.biteb.2019.100194
- Batista AP, Moura P, Marques P, Ortigueira J, Alves L, Gouveia L. 2014. Scenedesmus obliquus as feedstock for biohydrogen production by Enterobacter aerogenes and Clostridium butyricum. Fuel 117: 537-543. https://doi.org/10.1016/j.fuel.2013.09.077
- Gouveia L, Oliveira AC. 2009. Microalgae as a raw material for biofuels production. J. Ind. Microbiol. Biotechnol. 36: 269-74. https://doi.org/10.1007/s10295-008-0495-6
- Feng P, Yang K, Xu Z, Wang Z, Fan L, Qin L, et al. 2014. Growth and lipid accumulation characteristics of Scenedesmus obliquus in semi-continuous cultivation outdoors for biodiesel feedstock production. Bioresour. Technol. 173: 406-414. https://doi.org/10.1016/j.biortech.2014.09.123
- Chan MC, Ho SH, LeeDJ, Chen CY, Huang CC, Chang JS. 2013. Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochem. Eng. J. 78: 24-31. https://doi.org/10.1016/j.bej.2012.11.017
- Xie Y, Zhao X, Chen J, Yang X, Ho SH, Wang B, et al. 2017. Enhancing cell growth and lutein productivity of Desmodesmus sp. F51 by optimal utilization of inorganic carbon sources and ammoniumsalt. Bioresour. Technol. 244: 664-671. https://doi.org/10.1016/j.biortech.2017.08.022
- Chen CY, Ho SH, Liu CC, Chang JS. 2017. Enhancing lutein production with Chlorella sorokiniana Mb-1 byoptimizing acetate and nitrate concentrations under mixotrophic growth. J. Taiwan Inst. Chem. Eng. 79: 88-96. https://doi.org/10.1016/j.jtice.2017.04.020