Acknowledgement
This work was supported by the National Key R&D Program of China (2021YFD1000200), the Major Science and Technology Project in Yunnan Province (202102AE090042), the Major Science and Technology Project in Kunming (2021-J-H-002), the Innovative Research Team of Science and Technology in Yunnan Province (202105AE160016), the Expert Workstation Project in Yunnan Province (202005AF150103), and the Yunnan provincial key programs of Yunnan Eco-friendly Food International Cooperation Research Center project (2019ZG00901).
References
- Ng TB. 2006. Pharmacological activity of sanchi ginseng (Panax notoginseng). J. Pharm. Pharmacol. 58: 1007-1019. https://doi.org/10.1211/jpp.58.8.0001
- Zeng XS, Zhou XS, Luo FC, Jia JJ, Qi L, Yang ZX, et al. 2014. Comparative analysis of the neuroprotective effects of ginsenosides Rg1 and Rb1 extracted from Panax notoginseng against cerebral ischemia. Can. J. Physiol. Pharmacol. 92: 102-108. https://doi.org/10.1139/cjpp-2013-0274
- Yang WZ, Hu Y, Wu WY, Ye M, Guo DA. 2014. Saponins in the genus Panax L. (Araliaceae): a systematic review of their chemical diversity. Phytochemistry 106: 7-24. https://doi.org/10.1016/j.phytochem.2014.07.012
- Wang P, Cui J, Du X, Yang Q, Jia C, Xiong M, et al. 2014. Panax notoginseng saponins (PNS) inhibits breast cancer metastasis. J. Ethnopharmacol. 154: 663-671. https://doi.org/10.1016/j.jep.2014.04.037
- Jiang N, Qin LY, Ye YF. 2011. Research advances in diseases of Panax notoginseng. J. So. Agri. 42: 1070-1074
- Li YL, Wang BY, Chang YF, Yang YT, Yao CZ, Huang XQ, et al. 2019. Reductive soil disinfestation effectively alleviates the replant failure of Sanqi ginseng through allelochemical degradation and pathogen suppression. Appl. Microbiol. Biot. 103: 3581-3595 https://doi.org/10.1007/s00253-019-09676-4
- Yang M, Zhang XD, Xu YG, Mei XY, Jiang BB, Liao JJ, et al. 2015. Autotoxic ginsenosides in the rhizosphere contribute to the replant failure of Panax notoginseng. PLoS One 10: e0118555. https://doi.org/10.1371/journal.pone.0118555
- Cheng ZJ, Yang L, Wang Y, Yang JZ, Wei ML, Huang T W, et al. 2012. Research advances in cultivation of Panax notoginseng. J. Wenshan. Univ. 25: 1-11.
- Huang LF, Song LX, Xia XJ, Mao WH, Shi K, Zhou YH, et al. 2013. Plant-soil feedbacks and soil sickness: from mechanisms to application in agriculture. J. Chem. Ecol. 39: 232-242. https://doi.org/10.1007/s10886-013-0244-9
- Dong LL, Xu J, Feng GQ, Li XW, Chen SL. 2016. Soil bacterial and fungal community dynamics in relation to Panax notoginseng death rate in a continuous cropping system. Sci. Rep. 6: 31802. https://doi.org/10.1038/srep31802
- Miao CP, Mi QL, Qiao XG, Zheng YK, Chen YW, Xu LH, et al. 2016. Rhizospheric fungi of Panax notoginseng: diversity and antagonism to host phytopathogens. J. Ginseng Res. 40: 127-134. https://doi.org/10.1016/j.jgr.2015.06.004
- Wei W, Yang M, Liu YX, Huang HC, Ye C, Zheng JF, et al. 2018. Fertilizer N application rate impacts plant-soil feedback in a sanqi production system. Sci. Total. Environ. 633: 796-807. https://doi.org/10.1016/j.scitotenv.2018.03.219
- Miao ZQ, Li SD, Liu XZ, Chen YJ, Li YH, Wang Y, et al. 2006. The causal microorganisms of Panax notoginseng root rot disease. Scientia Agricultura Sinica 39: 1371-1378. https://doi.org/10.3321/j.issn:0578-1752.2006.07.011
- Miao CP, Qiao XG, Zheng YK, Chen YW, Xu LH, Guan HL, et al. 2015. First report of Fusarium flocciferum causing root rot of sanqi (Panax notoginseng) in Yunnan, China. Plant Dis 99: 1650
- Farh MEA, Kim YJ, Kim YJ, Yang DC. 2018. Cylindrocarpon destructans/Ilyonectria radicicola-species complex: Causative agent of ginseng root-rot disease and rusty symptoms. J. Ginseng. Res. 42: 9-15. https://doi.org/10.1016/j.jgr.2017.01.004
- Mao ZS, Long YJ, Zhu YY, Zhu SS, He XH, Chen ZJ. 2014. First report of Cylindrocarpon destructans var. destructans causing black root rot of Sanqi (Panax notoginseng) in China. Plant Dis. 98: 162.
- Wu Z, Hao Z, Zeng Y, Guo L, Huang L, Chen B. 2015. Molecular characterization of microbial communities in the rhizosphere soils and roots of diseased and healthy Panax notoginseng. Antonie Van Leeuwenhoek 108: 1059-1074. https://doi.org/10.1007/s10482-015-0560-x
- Fenoglio S, Gay P, Malacarne G, Cucco M. 2006. Rapid recolonization of agricultural soil by microarthropods after steam disinfestation. J. Sustain. Agr. 27: 125-135. https://doi.org/10.1300/J064v27n04_09
- Fennimore SA, Martin FN, Miller TC, Broome JC, Dorn N, Greene I. 2014. Evaluation of a mobile steam applicator for soil disinfestation in California strawberry. Hortscience 49: 1542-1549. https://doi.org/10.21273/HORTSCI.49.12.1542
- Richardson RE, James CA, Bhupathiraju VK, Alvarez-Cohen L. 2002. Microbial activity in soils following steam treatment. Biodegradation 13: 285-295. https://doi.org/10.1023/A:1021257026932
- Van Der Heijden MG, Bardgett RD, Van Straalen NM. 2008. The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol. Lett. 11: 296-310. https://doi.org/10.1111/j.1461-0248.2007.01139.x
- Mendes R, Kruijt M, De Bruijn I, Dekkers E, Van Der Voort M, Schneider JH, et al. 2011. Deciphering the rhizosphere microbiome for disease-suppressive bacteria. Science 332: 1097-1100. https://doi.org/10.1126/science.1203980
- Mendes R, Garbeva P, Raaijmakers JM. 2013. The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol. Rev. 37: 634-663. https://doi.org/10.1111/1574-6976.12028
- Philippot L, Raaijmakers JM, Lemanceau P, Van Der Putten WH. 2013. Going back to the roots: the microbial ecology of the rhizosphere. Nat. Rev. Microbiol. 11: 789-799. https://doi.org/10.1038/nrmicro3109
- Donhauser J, Niklaus PA, Rousk J, Larose C, Frey B. 2020. Temperatures beyond the community optimum promote the dominance of heat-adapted, fast growing and stress resistant bacteria in alpine soils. Soil Bio. Biochem. 148: 107873. https://doi.org/10.1016/j.soilbio.2020.107873
- Yang M, Yuan Y, Huang HC, Ye C, Guo CW, Xu YG, et al. 2019. Steaming combined with biochar application eliminates negative plant-soil feedback for sanqi cultivation. Soil Till. Res. 189: 189-198 https://doi.org/10.1016/j.still.2019.02.006
- Chen JW, Kuang, SB, Long GQ, Meng ZG, Li LG, Chen ZJ, et al. 2014. Steady-state and dynamic photosynthetic performance and nitrogen partitioning in the shade-demanding plant Panax notoginseng under different levels of growth irradiance. Acta Physiol. Plan. 36: 2409-2420. https://doi.org/10.1007/s11738-014-1614-9
- Xie HW, Yan DD, Mao LG, Wang QX, Li Y, Ouyang CB, et al.2015. Evaluation of methyl bromide alternatives efficacy against soil-borne pathogens, nematodes and soil microbial community. Plos One 10: e0117980. https://doi.org/10.1371/journal.pone.0117980
- Sun DL, Jiang X, Wu QL, Zhou NY. 2013. Intragenomic heterogeneity of 16S rRNA genes causes overestimation of prokaryotic diversity. Appl. Environ. Microb. 79: 5962-5969. https://doi.org/10.1128/AEM.01282-13
- Ding N, Xing F, Liu X, Selvaraj JN, Wang L, Zhao Y, et al. 2015. Variation in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at four different areas of China. Front. Microbiol. 36: 1055.
- Tu QH, Chen JY, Guo JH. 2013. Screening and identification of antagonistic bacteria with potential for biological control of Penicillium italicum of citrus fruits. Sci. Hortic. 150: 125-129. https://doi.org/10.1016/j.scienta.2012.10.018
- Wang WP, Wang ZH, Yang K, Wang P, Wang HL, Guo LW, et al. 2020. Biochar application alleviated negative plant-soil feedback by modifying soil microbiome. Front. Microbiol. 11: 799. https://doi.org/10.3389/fmicb.2020.00799
- Van Der Voort M, Kempenaar M, Van Driel M, Raaijmakers JM, Mendes R. 2016. Impact of soil heat on reassembly of bacterial communities in the rhizosphere microbiome and plant disease suppression. Ecol. Lett. 19: 375-382. https://doi.org/10.1111/ele.12567
- Shafi J, Tian H, Ji M. 2017. Bacillus species as versatile weapons for plant pathogens: a review. Biotechnol. Biotec. 31: 446-459. https://doi.org/10.1080/13102818.2017.1286950
- Qu Z, Zhao H, Zhang H, Wang Q, Yao Y, Cheng J, et al. 2020. Bio-priming with a hypovirulent phytopathogenic fungus enhances the connection and strength of microbial interaction network in rapeseed. NPJ Biofilms Microbi. 6: 45. https://doi.org/10.1038/s41522-020-00157-5
- Nicholson WL, Setlow P. 1990. Sporulation, germination and outgrowth, pp. 391-451. In Harwood CR, Cutting SM (eds.), Molecular Biological Methods for Bacillus, Chichester, UK: Wiley.
- Fira D, Dimkic I, Beric T, Lozo J, Stankovic S. 2018. Biological control of plant pathogens by Bacillus species. J. Biotechnol. 285: 44-55. https://doi.org/10.1016/j.jbiotec.2018.07.044
- Hashem A, Tabassum B, Allah EFA. 2019. Bacillus subtilis: A plant-growth promoting rhizobacterium that also impacts biotic stress. Saudi J. Biol. Sci. 26: 1291-1297. https://doi.org/10.1016/j.sjbs.2019.05.004
- Luo LF, Yang L, Yan ZX, Jiang BB, Li S, Huang HC, et al. 2020. Ginsenosides in root exudates of Panax notoginseng drive the change of soil microbiota through carbon source different utilization. Plant Soil 455: 139-153. https://doi.org/10.1007/s11104-020-04663-5